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1 Introduction

The efficient solution of large-scale systems resulting from the discretization of partial differential equations

(PDE) are of interest to engineers in many fields. Over the past several decades, as processors became

faster, the time-to-solution for a given large-scale system has decreased thereby permitting the solution

of larger and larger systems. It is human nature to desire the solution of systems larger than those we

can reasonably solve today. Indeed, engineers will likely continue to pose simulation, analysis, or control

problems over increasingly resolved and larger domains. The result is gigantic linear systems which must

be solved by a machine.

While model reduction algorithms have been invented for solving linear systems resulting from PDEs,

one can always invent a computational domain or set of physics for which the reduced-order model is

too large to solve. Nevertheless, model reduction is one method by which large-scale systems can be

solved faster. Indeed, they are employed in both real-time and multi-query settings. However, some model

reduction algorithms consist of two phases: an offline phase consists of obtaining a basis for projection

(often by collecting snapshots of the full-order system) a priori and projecting the full-order system; and

an online phase where the reduced-order model is deployed. The offline phase can be very expensive since

it involves the full-order solution of the large-scale dynamical system.

Proper orthogonal decomposition (POD) model reduction utilizes the method of snapshots to build the

basis for projection. It is well known that the applicability of the reduced-order model depends highly on

the samples, i.e. the snapshots. How to sample the parameter-state input-output map of the system to

build these bases has no best answer. For that reason, model reducers implement heuristics to decide how

to sample.

One heuristic method is the greedy algorithm originally proposed in [29]. The greedy algorithm chooses

the sample points by solving a PDE-constrained optimization problem. At each iteration we obtain a sample

1
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by choosing the parameter for which the error in output between the full-order and current reduced-order

models is (locally) maximal. Although we hope to find the global maximum over parameter space, the

objective function is rarely convex; therefore, we can only obtain a locally maximal solution at every

iteration. This algorithm for sampling to produce reduced-order models has been successfully implemented

in [2, 9].

Parallelization of the resulting PDE-constrained optimization problem is the topic of the current work.

While ongoing research in this field is conducted, we focus specifically on one particular problem im-

plementation through which many of the important topics in parallelism arise. In the next section, we

introduce the application of interest and formulate the problem. Section 3 discusses the opportunities

for parallelism throughout the application of the greedy sampling algorithm to the problem of Section 2.

While the discussion is specific to the present problem, we highlight the generality of the proclamations

and conclusions.

2 Formulation

In this section, we formulate the model reduction problem using the greedy-based POD technique. First,

we introduce the governing equations of porous media flow, the application of interest. Then, proper or-

thogonal decomposition (POD) is described in the context of projection-based model reduction techniques.

Finally, the greedy sampling algorithm is proposed for obtaining efficient samples from parameter space.

2.1 Application

Let Ω be the Lipschitz continuous domain with boundary Γ consisting of one part ΓN on which Neumann

(natural) boundary conditions are applied and one ΓD on which Dirichlet (essential) boundary conditions

are imposed. We required that ΓN ∪ ΓD = Γ but that they do not intersect, i.e. ΓN ∩ ΓD = ∅. We

call u(x;K) the pressure head in the domain associated with hydraulic conductivity K(x). Let f(x) be

the source, h(x) be the flux on the Neumann boundary, and g(x) be the prescribed pressure head on the

Dirichlet boundary. Then, for a given parameter field K, the pressure head is obtained by solving

−∇K · (∇u) = f in Ω,

K∇u · n = h on ΓN,

u = g on ΓD

where n is the outward-pointing unit normal.

For ease of explanation, we study only the problem with homogeneous essential boundary conditions

g = 0 in this work. We note, however, that a novel approach to the model reduction algorithm for
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inhomogeneous Dirichlet conditions is developed in [21]. Under these assumptions and given an interpola-

tion scheme, the governing equations may be written in variational form and discretized resulting in the

following linear system

A(K)u = f (1)

where A ∈ IRN×N is the stiffness matrix, f ∈ IRN is the load vector, and u ∈ IRN is a vector of unknown

nodal pressure head values. As mentioned, engineers are interested in the solution of systems like (1) for

which N >106.

While such systems can be solved with a single processor today, reduced-order models are required in

the real-time and multi-query settings. For real-time application, the need is obvious: such systems simply

cannot be solved quickly enough. The multi-query setting often pertains to some probabilistic systems

analysis, e.g. Bayesian inference. In that case, solution of the model is required for many different values

of the parameter, and therefore utilization of the full-order model is too slow.

2.2 POD model reduction

Proper orthogonal decomposition (POD) model reduction is a projection-based technique for reducing the

dimensionality of the linear system (1). By identifying a subspace of the parameter-state input-output

map, we are able to project the full-order system onto a lower-dimensional space. There, we solve the

system for modal coefficients of the basis vectors and reconstruct the full-order solution by the associated

linear combination. Let the parameter basis P and the state basis V be given, then the reduced-order

model

Arur = fr (2)

is obtained by Galerkin projection. Here, Ar = VTA(Ppr)V ∈ IRn×n is the reduced stiffness matrix,

ur ∈ IRn is the reduced state, and fr = VT f ∈ IRn is the projected load vector where n≪N . The small

dense linear system (2) is solved for the modal coefficients ur and then the approximation to the full-order

solution is obtained ũ = Vur. The argument of the stiffness matrix is the restriction of the full parameter

p to the subspace span(P). In this case, we employ simultaneous parameter-state model reduction; that

is, since the parameter K resides on the mesh, it is very high dimensional. Since the goal is the solution

of an optimization problem (inverse, control, etc.) over the feasible space of the parameter, we reduce the

parameter as well.

2.3 Tensor vector product

One computation of the discrete governing equations deserves further explanation. The stiffness matrix A

is a matrix-valued function of the parameter p through what I call the tensor-vector product. Without
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derivation, the weak form of the governing PDE is

∫
Ω

K∇u · ∇v dΩ =

∫
Ω

fv dΩ +

∫
ΓN

hv dΓ, ∀v ∈ H1
0 (Ω). (3)

When the left hand side is discretized by interpolating the test and trial functions with linear nodal

basis φi (i = 1, 2, . . . , N), the resulting stiffness matrix becomes a linear function of the coefficients of the

parameter vector p = K. It is constructed via the tensor-vector product A(p) = T ⊗ p where

Ti,j,k =

∫
Ω

φk∇φi · ∇φj dΩ (4)

and

T ⊗ p =

N∑
k=1

pkT:,:,k. (5)

That is, the tensor vector product is the linear matrix expansion in the elements of the vector. Note that the

tensor T ∈ IRN×N×N is very sparse because of the compact support of the basis functions. The structure

of the tensor is leveraged in the serial tensor-vector product code, but other work-arounds are required for

parallel implementation. This computation is at the heart of the PDE-constrained optimization problem

we pose in the next section. Current progress on parallel algorithms for its computation are expounded in

Section 4.

2.4 Greedy sampling

We now describe one method for obtaining the bases P and V for projection-based model reduction. We

use the method of snapshots to construct the bases. However, the question remains: how do we choose the

samples? One method is the greedy algorithm. We pose it here in the residual formulation described in [4].

While obtaining the parameter field which maximizes the residual is not the same as maximizing the error

in output between the full- and reduced-order models, it has the advantage of not depending on a solution

of the full-order system. Instead, only the full-order stiffness matrix-vector product is required. Since the

greedy sampling algorithm requires at each iteration the solution of the PDE-constrained optimization

problem, it is a complex optimization problem whose solution time requires speed-up.

At each iteration of the algorithm, we must solve the following optimization problem for p∗

p∗ = −
1

2
arg min ‖r‖2

2 = −
1

2
‖C(A(p)Vur − f)‖2

2 (6)

subject to PT MPpr = PMp (7)

Arur = fr. (8)

where C is a matrix relating the residual to the output of interest. The constraints require that the reduced
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parameter is the same as the full parameter in some mass-matrix weighted integrated sense and the residual

measures the extent to which the solution approximated by the reduced-order model satisfies the full-order

linear system.

We solve the optimization problem (6) by forming the Lagrangian and utilizing adjoints to compute

the gradient of the objective function with respect to the entries in the parameter p. These gradients

(and the objective function evaluation) are passed to a suitable solver in Matlab, e.g. using fmincon.

Although the analytical Hessian is not suitable for computation in the same routine, we supply it by finite

differences in order to utilize fmincon’s large-scale algorithm: trust-region interior-reflective Newton. It is

the computation of the objective function, the gradient evaluation by adjoints, and the finite differencing

of the Hessian where we hope to gain speed-up. Since the optimization routine requires repeated calls of

these functions, and since the optimization must take place dozens of times to construct the reduced bases,

speed-up of this routine is required for timely assessment of the resulting reduced-order model.

2.4.1 Objective function

The objective function needs to be evaluated for different parameter vectors p during the course of opti-

mization. Given p, the current P and V, f and a method to compute A(·), we must carry out the following

computations: (i) project p onto the reduced-parameter subspace span(P) to obtain pr; (ii) assemble the

stiffness matrix A(Ppr); (iii) construct the reduced-order model Arur = fr; (iv) solve for ur; and (v)

evaluate the 2-norm of the residual. In serial this might be done with Algorithm 1.

Algorithm 1 Serial Objective Function Evaluation F = objfun(T,M,P,V,p, f ,C)

pr = (PT MP)−1(PT Mp);

A = T ⊗ p;

Ar = VT (T ⊗ (Ppr))V;

fr = VT f ;

ur = A−1
r fr;

r = C(AVur − f);

F = −1

2
‖r‖2

2
;

2.4.2 Gradient

Consider now computing the gradient of the objective function with respect to the parameter p, i.e.

∇pF ∈ IRN . The gradient is computed via adjoints and elimination. The somewhat lengthy derivation is

omitted here. We just present the algorithm.

Algorithm 2 Serial Gradient Evaluation g = grad(T,M,P,V,Ar ,ur,C)

λh = A−1
r (CVT Ar);
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fk = −λh(T ⊗ P)Vur ;

λk = (PT MP)−1fk;

Z = (T ⊗ I)ur;

g = −CZr + MPλk;

2.4.3 Hessian

As mentioned before, the analytical Hessian is far too complicated to be worth deriving. In fact, it might

be much more computationally intensive to compute directly (given the analytic formula) than to get a

good approximation by finite differences. We provide a routine to fmincon which computes the Hessian-

vector product. Then, the large-scale algorithm can be utilized. Here, we write the algorithm in one-sided

difference form. Note that a central-difference would yield a more accurate result, but may not be worth

the expense.

Algorithm 3 Serial Hessian-vector Product Evaluation h = hessvec(v)

h = 0;

for i=1:N do

p̃ = p + ǫei;

g̃ = grad(p̃)

h = h + (v(i)/ǫ)(g̃ − g);

end for

3 Parallelism

Enter parallel computing. We use Star-P, a software packge developed by Interactive Supercomputing,

Inc. which allows users to perform parallel computations on an HPC server from a Matlab front end. In

this section, we highlight the opportunities in Algorithms 1–3 to be taken advantage of on multi-processor

clusters.

3.1 Concurrency

We first investigate the concurrency in the algorithms. Concurrency exists in an algorithm where operations

are data and task independent. In particular, to find concurrency, we must identify the data dependence

in each algorithm.

Consider first Algorithm 1. Computation of the residual requires three sources of information: (i) input

data (f and C); (ii) full-order stiffness matrix T ⊗ p; and (iii) reduced-order solution ur. Each of these

components can be computed independent of the others. That is, we envision three paths from start to

end. At the start, all of the data comes in. Along each branch we compute (or transfer data). And at
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the end, the norm of the residual is computed. This would amount to the so-called multi-input multi-data

(MIMD) program. While MIMD programs represent maximum efficiency for many algorithms by taking

advantage of all concurrency, they are notoriously difficult to implement.

In Algorithm 2 we see some similar aspects. The computations of the two adjoints λh and λk are

independent, as is the computation of Z. They are all collected in the final line where the gradient is

constructed form these components.

Algorithm 3 demonstrates vulnerable concurrency. We can take advantage of the concurrency disguised

within this for loop to compute the Hessian-vector product. Each of the iterations of the for loop are

completely independent from each other. Therefore, we have true task parallelism, i.e. if we had N

processors we could imagine computing one part of h on each processor and summing the result across

processors.

3.2 Data parallelism

There is plenty of data parallelism to be taken advantage of in these algorithms. For example, notice that

Algorithms 1–2 both require the computation of the tensor-vector product T ⊗ (·). For large problems,

the tensor T will not fit on most clients; therefore, at the very least it must reside on the server.

There are many methods by which the generic tensor-vector product and tensor-matrix product of the

algorithms could be computed. However, we must consider the unfortunate fact that neither Matlab nor

Star-P provide support for multi-dimensional sparse data structures. In serial, the tensor can be stored

and utilized efficiently in a modified column-compressed format because the nonzero pattern of the result

of any tensor-vector product is known a priori. The format is constructed so that the computation of

any nonzero in the result amounts to a dot product over data which already resides next to each other in

memory. In parallel, the algorithm, and even the storage of the tensor must be reconsidered. See Section 4.

In addition, the matrix-vector products, etc. can also be implemented in parallel, but the speedup will not

be great for the size of the class of problems we consider. We recognize, however, that we may have to do

this to minimize communication.

Once we store the tensor on the server, it is in our best interest to compute on the server until a small

result can be passed back to the client. This is one important consideration of communication.

3.3 Communication

Now we consider the communication between the client and the server, and between the different processors

of the server. Based on preliminary experimentation, it is the former which is the most expensive as the

data is sent over the MIT network. For this reason, we want to limit the size of data and the frequency of

transmissions of data communicated between the client and the server. While the latter communication

we keep in the back of our heads, it is not the dominant consideration here.
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There seem to be two approaches for implementation here, each requiring different communication.

Suppose, for example, that each call to fmincon could be run on the server. Then, in principle, the data

required for one call to fmincon could be passed to the server, the optimization problem would be solved

with communication only among the processors on the server, and then the solution returned back to the

client. As a first try, however, it may be worthwhile to view the computation of the objective function,

gradient, and hessian-vector product as an inner loop to be computed on the server. That is, as fmincon

requires, these three components can be computed individually on the server.1

The data required to compute the objective function evaluation would be instantiated on the server. If

the objective function is required, it is computed on the server, and then passed back to the client (where

fmincon is running). The communication required to do this is the outgoing message of p ∈ IRN and the

incoming message F ∈ IR.

If the gradient is requested, the required data already resides on the server (from the objective function

evaluation). Therefore, the gradient must be computed on the server and then transferred to the client.

This requires another message of size N . Likewise, the hessian-vector product results in a vector h ∈ IRN

– another N -element message.

Note that if fmincon runs on the server, the only message required is the solution back to the client –

one message of length N .

4 pp STIRNCG

Instead of hacking the more complicated fmincon code, I modified a freely-available optimizer called

STIRNCG developed by Tan Bui-Thanh for his doctoral thesis at MIT in 2006–2007. STIRNCG is the Cadillac

of optimizers for large-scale bound-constrained problems. In optimization, the quality of a code can often

be discerned from the number of adjectives accompany it. In the case of STIRNCG, the adjectives all appear

in the name. In particular, STIRNCG is a Newton solver, i.e. it uses the Hessian directly (either by finite

difference or analytic user-supplied) and not an approximation thereof (e.g. with BFGS update). The

optimizer also uses a subspace method to solve for the Newton direction in a lower-dimensional manifold,

thereby saving computation on that portion of the inner loop. In addition, STIRNCG employs inexact

conjugate gradients (CG) to solve Hp = −g for the descent direction p in order to avoid oversolving. Once

the descent direction is ascertained, a trust-region subproblem is solved in the subspace. If the step provides

sufficient reduction, it is taken; if not, the trust-region radius is decreased and the trust-region subproblem

is solved once again. Once a step is taken, if it leads outside of the bound constraints, it is reflected back by

an interior-reflective scheme. In summary, STIRNCG is a subspace, trust-region, interior-reflective, Newton

1Note that fmincon, or any suitable optimization routine, requires either the objective function, the objective function and
the gradient, or the objective function, gradient, and hessian. For example, it never requires the hessian, and not the objective
function.



Chad Lieberman 18.337 Parallel PDE-constrained Optimization 9

solver using inexact CG to solve for the descent direction.

STIRNCG also follows the conventions of fmincon in that a user specifies two separate functions: one

for the objective function and gradient computation and one for the Hessian-vector product. One may

also pass a preconditioning routine, but I do not take advantage of that feature here. However, the main

point is that STIRNCG maintains the ease of use of fmincon – a consistency I extend to star-p. In effect, I

instrumented STIRNCG to run in parallel using star-p. That is, a user of the STIRNCG optimizer does not

have to make any modifications to his/her code in order to run in parallel. Instead of calling STIRNCG,

one calls pp STIRNCG instead and provides a few additional arguments to control data passing between

modules of the optimizer. In the future, I will utilize some more basic data passing structures/concepts

to avoid the need for these additional arguments. Even they can be eliminated! That is, to say, with

some streamlining and refactoring, pp STIRNCG can be substituted directly into a STIRNCG application and

the user will have parallel performance immediately. This convenience eliminates the need for extended

periods of code development complete with all the associated headaches and frustrations.

A typical STIRNCG optimization iteration is embodied in the flowchart in Figure 1. The algorithm

Figure 1: The flowchart for a trust-region based optimization algorithm (e.g. STIRNCG).

begins with an initial iterate. If the location is not in the feasible set, it is projected there. Then, at each

iteration, the objective function f and gradient g are computed. The convergence criteria are tested; if

not satisfied, a new search direction is computed by solving Hp = −g where H is the Hessian matrix of

second derivatives and p is the search direction. In STIRNCG, this linear system is solved inexactly with CG.

Note that it is not necessary, in particular when we are far from the solution, to solve this system exactly.

We just require a direction of sufficient descent. After the search direction is obtained, a trust-region

subproblem is constructed along that direction. This subproblem is an inequality constrained quadratic

program (QP) based on the first three terms of a Taylor series expansion of f about the current iterate.

Once the trust-region subproblem is solved, we check that the step provides sufficient decrease of f . If it

does, we accept the step and expand the trust-region. If not, we reject the step, decrease the trust-region
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and resolve the trust-region subproblem with tighter constraints. The process is repeated until convergence

is achieved.

In PDE-constrained optimization, the objective function, gradient, and Hessian-vector product com-

putations are the bottleneck. Generally, these evaluations require at least one simulation which could take

months to solve (even in parallel!). In comparison, the mechanics of the optimization solver require little

or no cost. Therefore, the focus in developing pp STIRNCG was directed toward parallelizing these three

aspects: objective function, gradient, and Hessian-vector product evaluations. This is carried out using

star-p.

We also, however, want everything to happen in parallel (as mentioned before). The current version

of fmincon available from ISC is ppfmincon which computes gradients and Hessians by finite-differencing

instantiates fmincon on the client and continually passes data back and forth between the client and

server. For slow connections (e.g. to starp.csail.mit.edu), such an implementation makes the parallelism

useless except for extremely large problems. Instead, I take a different approach. The concept is that the

optimization routine requires some amount of input data. Then, once it has that data, it can compute away

until it obtains the solution, and should not be talking to the client during any of that period. Therefore, in

the wrapper to pp STIRNCG, the necessary data is first placed on the server. From there, all computations

take place on the back end and only the solution is returned to the client. So we pay a cost upfront to

transfer the data, but eliminate the constant (and unnecessary) client/server communication. In fact, if

the data is pre-computed it can be transferred to the back end directly by FTP, so even this overhead can

be dramatically reduced.

5 Results

The parallel STIRNCG code I wrote was tested on several model problems. We consider the spatially and

temporally discrete system

Ax = Bu y = Cx (9)

where A ∈ IRN×N , x ∈ IRN is the state, B ∈ IRN×q is the input transition matrix, u ∈ IRq are the inputs.

The output equation contains the outputs y ∈ IRd and the output matrix C ∈ IRd×N .

We wish to find the inputs u such that the output matches some data we have. That is, we wish to

solve the optimization problem

u∗ = arg minJ =
1

2
‖y − yD‖2 +

1

2
β‖u‖2

subject to Ax = Bu

y = Cx
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where yD are the target data and β is a regularization parameter necessary to make the problem well-posed.

In this case the regularization term penalizes high-energy inputs. That is, we wish to match the outputs

but penalize those inputs requiring a lot of power (e.g. in an optimal control problem).

The details of the solution of this optimization problem are not the focus here. Instead, we are interested

in the scalability of pp STIRNCG with the size of the model N and number of processors np. To that end,

a parameter study was completed over problem sizes N = 1K, 2K, 3K, 4K and processors np = 1, 4, 8, 12.

All of the runs were completed on the star-p cluster at CSAIL (starp.csail.mit.edu) and there was no

other traffic during the runs.

In Figure 2, the speedups are plotted per iterate of the optimization. For each problem, the same initial

conditions were used, and indeed, the same steps were taken by the optimizer. Therefore, the speedup we

see should be isolated to the contribution of parallelization.

(a) (b)

(c) (d)

Figure 2: Speedup results for the model problems for np = 4, 8, 12.

The speedups are computed by dividing the serial (np = 1) time by the parallel time in each case.

It is first important to note that we do achieve speedups exceeding unity – that is, parallelization has

helped. Then, we consider the scalability. For embarassingly parallel implementations, the speedup should

go linearly with the number of processors. This should be taken as the upper-limit, the best we can do. In
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our case, we do not obtain linear speedup, but we do get good results. Perhaps more importantly, however,

is that the speedup increases as we increase the problem size. Although time and storage limitations forced

small model problems for testing, we are already seeing that the parallelism will become better and better

as we increase N – this is exactly what we want.

There are two oddities in the results which are worth pointing out. For problems of size N = 1000 and

N = 3000, we see that using 12 processors actually gives us decreased performance from that which used

8 processors. I cannot explain this aberration in the data. This is one disadvantage of the star-p mindset

– that everything is abstracted from the user – but the easy implementation and portability compensate

entirely for that.

In summary, we have achieved almost np/2 speedup for the model problem N = 4000. The author

believes that is a significant speedup for a computation as complex as an optimization routine. Not only

do we achieve parallel speedup, but this can be taken advantage of by anyone with existing Matlab

codes used with some of the optimizers in the Optimization toolbox (e.g. fmincon). All that needs to be

supplied is some additional arguments to the optimizer call. Building a parallel optimization toolbox on

top of star-p is the goal – as star-p grows and becomes better and better, the toolbox automatically does

as well.

6 Conclusion

We have presented and put into perspective the task of PDE-constrained optimization. Now that the

simulation community has a good handle on numerical solution of PDEs, the logical next step is to optimize

with these simulations in the inner loop. Many engineering companies are now doing exactly that. The

optimization requires the solution of large-scale PDE simulations and their respective adjoints throughout

the iteration. These solutions are very expensive; therefore, they were targeted for parallelization. A freely

available optimizer tuned for such problems is STIRNCG developed by Tan Bui-Thanh (MIT). I instrumented

this optimizer to compute everything in parallel; that is, to eliminate communication between the client

and server, an aspect of ISC’s ppfmincon which slows down performance dramatically. The result is a

completely portable parallel optimizer for bound-constrained problems.
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