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1. Introduction 
 

Earthquakes are usually disasters to human beings; however, the seismic wave 

can flash the interior structure of the earth, like lightning in the dark. In order to 

know the history, the evolution of our planet, we must know current structure of 

the earth and the seismic wave is the main information resource we can use. 

 

Seismic data contain abundant information about interior earth. The seismogram 

has direct wave, reflection wave, diffraction wave and so forth. The first step of 

building up a preliminary earth model is to use the arrival time of direct waves, 

which is called tomography. Different rocks have different elastic properties; 

therefore, the travel time of a certain seismic ray depends on the rocks through 

which the ray path travels. So if we know the path of each ray and the location of 

sources and receivers, we can invert the elastic velocity model of the earth.    

 

Tomography computation is quite expensive due to massive volume of data. For 

example, if there are M earthquakes and N stations, MN rays should be consid-

ered. In practice, tens of thousands of rays are required to get a reliable result. 

Therefore, parallel implementation is necessary and it is not very difficult to con-

vert serial codes to parallel ones.  

 

2. Serial Algorithm of Tomography 
 

Assuming the exact locations of earthquakes are available, which is impossible in 

practice, we can retrace the seismic ray path for each source receiver pair by Snell 

Law. 

  

The travel time t is 

t(x,  x ) =
ds

v
s                                                        (1) 

where x is source location and  x  is receiver location. s  is the ray path and v  is 

the elastic velocity of rocks, as shown in figure 1. 

 

In order to understand the structure of interior earth, we need mesh the earth into 

blocks and assume each block is homogeneous, which means the elastic property 

of a single block is the same. Equation (1) can be modified as  

 

t(x,  x ) = s j p j

j

                                                   (2) 



where, p j =1/v j  is the slowness. v j  is the elastic velocity of the j-th block; s j  is 

the length of ray path in j-th block. If one ray does not travel through k-th block, 

sk  is zero. For a certain source and receiver pair, we can see that vector s is very 

sparse.  Given a medium velocity model P and source receiver location, the ray 

path can be retrieved by Fermat’s principle. By doing ray tracing for each source 

receiver pair, we finally get the linear equation. 

 

   Sp = t                                                               (3) 

Where Sij  is the length of i-th ray path in j-th block. p j  is the slowness of j-th 

block. ti is the travel time of i-th ray. 

 

If we divide the earth into N N N  blocks, and the number of source receiver 

pairs is M, S is an M N 3 matrix. p  is N 3 1 and t  is M 1. Usually, matrix S 

is large, very sparse and ill conditioned. It turns to be a sparse least square prob-

lem. Our aim is to find vector p  to minimize t Sp . The normal equation is  

 

ST Sp = ST t                                                          (4) 

 

 
Fig.1 diagram of seismic ray path 

. 

 

Serial Tomography Algorithm: 

 



1. Give an initial velocity model p = p0 
2. Do ray tracing for each seismic ray based on model p , and derive matrix S  

3. Solve normal equation STSp = ST t  and update the value of velocity model p  

4. Repeat step 2 and step 3 until meet certain convergent criterion. 

 

3. Parallel Implementation 
 

From the serial algorithm above, we can see that there are two parts in the algo-

rithm: ray tracing and least square problem. Both of them are time consuming and 

need parallelism.  

  

The first part is ray tracing for each source-receiver pair. For a single ray-tracing 

task, the input is the location of source (x,y,z)  and receiver (  x ,  y ,  z ), the travel 

time t  as well as the velocity model p . At step 2, tens of thousands of ray-tracing 

tasks use the same velocity model p . Assuming the number of processors is Np , 

and rays is NR , the communication between nodes is rare. The message received 

from root node is about O(7NR /Np ) . So it is quite suitable for SIMD parallelism. 

Such a simple embarrassing parallelism may be not the best choice but it is very 

practical and easy to implement.  

 

The second one is how to solve a sparse least square problem in parallel. This is a 

big issue in earth science. One is concerned with storage. In present, most PC can 

only support up to 4GB memory. In order to get higher resolution, the grid need 

be divided in very small scale, so the data must be stored distributedly. Another 

issue is related with the sparse matrix operation. In serial codes, sparse matrix op-

eration can be speed up by virtue of zeros in the sparse matrix. It is not an easy 

question how efficient the paralleling sparse matrix operation can be. A good par-

allel algorithm should balance the communication and computation cost well. 

 

In serial world, mainly there are two ways to solve linear problem: direct and it-

erative methods. Direct methods have two classes:  elimination methods and or-

thogonalization methods.  The elimination method is based on Gaussian elimina-

tion. The most straightforward method is to compute the Cholesky factorization of 

normal equation (4). 

 PS
T SPT = LLT                                                      (5) 

where P is a permutation matrix. The solution is obtained by solving two triangu-

lar systems Ly = PST t  and L
T (Pp) = y .  Also we can ignore the symmetric property 

of the normal equation, and do LU factorization directly. However, in both meth-

ods, if S is sparse, there is a fill-in issue during the factorization. In order to keep 

the sparsity, methods of reordering the pivots are developed, such as Peters-

Wilkinson decomposition and dynamic reordering. 

 

Another direct method is based on orthogonalization. The basic idea is that there 

exists an essentially unique factorization for any M N matrix A 
A =QU                                                         (6) 



where Q is an orthogonal matrix and U is upper triangular.  This kind of method 

has higher stability in ill conditioned cases.  Small eigenvalues or singular values 

can be eliminated during the decomposition.  The simplest of this method is the 

modified Gram-Schmidt (MGS) method. Also Householder transformation or 

Givens transformation can be used to obtain equation (6).   

 

Most iterative methods used in linear systems is based on conjugate gradient 

method, such as CGLS, LSQR and so forth.  Compared with direct method, itera-

tive methods need less storage and can be better controlled during the iteration. 

As to sparse matrix, direct methods often have fill-in problems and the index re-

ordering process is relatively complex. So it may not perform as well as on dense 

systems. 

 

4. LSQR Method  

 
Considering my problem, in which S is very large, very sparse and ill conditioned, 

the storage and stability are both important. LSQR method, which was proposed 

by Paige in 1982, is a winner among those methods. I don’t need to trace the reor-

dering stuff in parallelized code, which is not quite easy.  However, iterative 

method cost more time on communication, because at step, the new vector need to 

be updated.  

 

LSQR method is a derivation of conjugate gradient method. Paige first found the 

neat relationship between two bidiagonalization results from Lanczos process. He 

also compared LSQR with other methods in his paper and concluded that LSQR 

method had higher stability. The algorithm of LSQR is below. 

 

LSQR Algorithm: 

 

Giving equation Ax = b 

 

1. Initialize 

1u1 = b,    1v1 = ATu1,     w1 = v1,      x0 = 0 

       1 = 1,       1 = 1 

      where i, i > 0 and vi =1, ui =1 
 

2. For i=1, 2, 3, … repeat steps 3-6 

 

3. Continue the bidiagonalization 

i+1ui+1 = Avi iui  

i+1vi+1 = ATui+1 i+1vi  
 

4. Construct and apply next orthogonal transformation 

i = (  i
2

+ i+1
2 )1/ 2                   ci =  i / i 

si = i+1 / i                            i+1 = si i+1 



 i+1 = ci i+1                        i = ci  i 

 i+1 = si  i 

 

5. Update x,w 
xi = xi 1 + ( i / i)wi  

wi+1 = vi+1 ( i+1 / i)wi  

 

6. Test for convergence 

 

5. Analysis of Sparse Matrix-Vector multiplication  

 
In tomography equation Ax = b, A  is very sparse but vectors x,b are dense. In 

practice, non-zero entries of A  distribute quite evenly in rows.  On the other hand, 

the most time-consuming part of LSQR algorithm is step 3 and step 5, which cor-

respond sparse matrix multiplication and vector addition, respectively. Dense vec-

tor addition is relatively easy to parallelize, so the key to parallelize LSQR 

method is to parallelize sparse matrix vector multiplication.   

 

One of storage formats of sparse matrices is Harwell-Boeing format, compressed 

row storage (CRS), which stores non-zeros row-wise contiguously.  A sparse ma-

trix is stored in 3 arrays, shown in Figure 2. One is to store non-zeros, while the 

others store the column index of each non-zeros and the index of first non-zero in 

each row, respectively. The total storage is NNZ real numbers and NNZ+N+1 in-

tegers, where NNZ is the number of non-zeros and N is the number of rows.  

 

 

 
Fig. 2 CRS format of sparse matrices 

  

In CRS format, matrix-vector multiply yi = Aij x j  can be represented as the fol-

lowing: 

for each row i 

 for k=ptr[i]  to ptr[i+1]-1  

  y[i]=y[i]+val[k]*x[ind[k]] 

end 



The matrix-vector multiply yi = Aij
T x j  in step 3 of LSQR algorithm can be repre-

sented as: 

 

for each row i 

 for k=ptr[i]  to ptr[i+1]-1  

  y[ind[k]]=y[ind[k]]+val[k]*x[i] 

end 

        

In serial algorithm, the performance of SpMV highly depends on machine, kernel 

and matrix structure.  Good data structure may speed it up surprisingly, for in-

stance diagonal matrices. From Fig. 3 we can see that the peak speed of SpMV on 

scalar tuned machine is only about 20%. Actually the bottleneck of SpMV is due 

to time of fetching data from memory. In order to improve the performance, for 

certain matrices, the non-zeros can be stored by block other than individually. The 

storage can drop down and the speed can increase by 50%  ~ 300%. The block 

size r c  can be searched in run-time to minimize the time cost. However this 

method is based on case by case.  As to an arbitrary matrix, extra reordering or 

fill-in cost can be introduced. Back to my problem, the properties of matrix A  

need to be examined firstly before paralleling implement.  

 

 
Fig. 3 serial performance of SpMV 

 

 

 



6. Parallelism of SpMV 

 
The most important issues of parallelism are locality and load balance.  In order to 

keep load balance, the partitions should be by non-zeros counts, not merely by 

rows or columns.  On the other hand, to keep locality, “owner computes” rule is 

employed, which means that processor k stores y[i],x[i] and row i of A for all i in 

Nk  and computes y[i] = Ai x .  

 

As to the matrix A  in our problem, the number of non-zeros in each row is quite 

the same. So 1D partition by row is a natural way. A bad news is that it is hard to 

make high locality because the non-zeros distribute very evenly, shown in Fig. 4.  

The typical sparcity is around 1%.  Although it is not as sparse as band diagonal 

matrices, matrix-vector multiplication can speed up by more than ten times (e.g. 

Fig. 5). 

 

 
Fig. 4 non-zeros of A. nnz=10020, sparsity=0.0167 

 

Assuming A  is M N , and the sparsity is , then the number of non-zero ele-

ment in each row is N , if non-zeros distribute evenly.  If we have np  processors 

and divide A  by rows (regardless of scale issues), the communication cost of each 

processor is O(N /np ) + O(2 MN /np ) .  Here O(N /np ) is the cost of sending the 

value of vector x , and O(2 MN /np )  is the communication cost of matrix A  por-

tion. The computation cost of each processor is O(2 MN /np ) .   



 
Fig. 5 Time cost of dense matmul and sparse matmul. Red line is  

dense case and Blue one is sparse. Sparsity is 0.01 

 
Fig. 6 Time cost of  SpMV in parallel. Sparsity of matrices is 0.01. 



 

In this naïve parallel algorithm, communication cost is higher than computation 

cost.  The highest parallel efficiency is no more than 0.5. Figure 6 shows the par-

allel efficiency with the number of processors. We can see that the time cost does 

not decrease monotonically as expected. It seems there is a tradeoff between 

communication cost and computation cost. Index searching of vector x  and the 

network structure effect the computing efficiency remarkably, especially more 

processors are used. 

 

7. Conclusion 

 
In this report, I analyze the serial algorithm of tomography, and parallelize the 

codes using different strategies in different steps of the algorithm. In ray-tracing 

part, a simple embarrassing parallelism is good enough, for it is a typical SIMD 

case. Another part of tomography is a sparse least square problem. Here I choose 

LSQR after comparing with other methods.  The core of paralleling implementa-

tion of LSQR is sparse matrix vector multiplication (SpMV).  Here I use 1D row 

partition given the special structure of the matrix. 

 

From the test results of SpMV, we can see that SpMV parallelism is a quite com-

plex problem. It depends not only the structure of matrices but also the hardware 

and network issues. It is also a very interesting work to compare direct and itera-

tive methods, or even hybrid methods dealing with sparse least square problems.  
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