
18.337 Final Report

Parallel Implementation of Earth Tomography
Xuefeng Shang

May 14, 2008

1. Introduction

Earthquakes are usually disasters to human beings; however, the seismic wave

can flash the interior structure of the earth, like lightning in the dark. In order to

know the history, the evolution of our planet, we must know current structure of

the earth and the seismic wave is the main information resource we can use.

Seismic data contain abundant information about interior earth. The seismogram

has direct wave, reflection wave, diffraction wave and so forth. The first step of

building up a preliminary earth model is to use the arrival time of direct waves,

which is called tomography. Different rocks have different elastic properties;

therefore, the travel time of a certain seismic ray depends on the rocks through

which the ray path travels. So if we know the path of each ray and the location of

sources and receivers, we can invert the elastic velocity model of the earth.

Tomography computation is quite expensive due to massive volume of data. For

example, if there are M earthquakes and N stations, MN rays should be consid-

ered. In practice, tens of thousands of rays are required to get a reliable result.

Therefore, parallel implementation is necessary and it is not very difficult to con-

vert serial codes to parallel ones.

2. Serial Algorithm of Tomography

Assuming the exact locations of earthquakes are available, which is impossible in

practice, we can retrace the seismic ray path for each source receiver pair by Snell

Law.

The travel time t is

t(x, x) =
ds

v
s (1)

where x is source location and x is receiver location. s is the ray path and v is

the elastic velocity of rocks, as shown in figure 1.

In order to understand the structure of interior earth, we need mesh the earth into

blocks and assume each block is homogeneous, which means the elastic property

of a single block is the same. Equation (1) can be modified as

t(x, x) = s j p j

j

 (2)

where, p j =1/v j is the slowness. v j is the elastic velocity of the j-th block; s j is

the length of ray path in j-th block. If one ray does not travel through k-th block,

sk is zero. For a certain source and receiver pair, we can see that vector s is very

sparse. Given a medium velocity model P and source receiver location, the ray

path can be retrieved by Fermat’s principle. By doing ray tracing for each source

receiver pair, we finally get the linear equation.

 Sp = t (3)

Where Sij is the length of i-th ray path in j-th block. p j is the slowness of j-th

block. ti is the travel time of i-th ray.

If we divide the earth into N N N blocks, and the number of source receiver

pairs is M, S is an M N 3 matrix. p is N 3 1 and t is M 1. Usually, matrix S

is large, very sparse and ill conditioned. It turns to be a sparse least square prob-

lem. Our aim is to find vector p to minimize t Sp . The normal equation is

ST Sp = ST t (4)

Fig.1 diagram of seismic ray path

.

Serial Tomography Algorithm:

1. Give an initial velocity model p = p0
2. Do ray tracing for each seismic ray based on model p , and derive matrix S

3. Solve normal equation STSp = ST t and update the value of velocity model p

4. Repeat step 2 and step 3 until meet certain convergent criterion.

3. Parallel Implementation

From the serial algorithm above, we can see that there are two parts in the algo-

rithm: ray tracing and least square problem. Both of them are time consuming and

need parallelism.

The first part is ray tracing for each source-receiver pair. For a single ray-tracing

task, the input is the location of source (x,y,z) and receiver (x , y , z), the travel

time t as well as the velocity model p . At step 2, tens of thousands of ray-tracing

tasks use the same velocity model p . Assuming the number of processors is Np ,

and rays is NR , the communication between nodes is rare. The message received

from root node is about O(7NR /Np) . So it is quite suitable for SIMD parallelism.

Such a simple embarrassing parallelism may be not the best choice but it is very

practical and easy to implement.

The second one is how to solve a sparse least square problem in parallel. This is a

big issue in earth science. One is concerned with storage. In present, most PC can

only support up to 4GB memory. In order to get higher resolution, the grid need

be divided in very small scale, so the data must be stored distributedly. Another

issue is related with the sparse matrix operation. In serial codes, sparse matrix op-

eration can be speed up by virtue of zeros in the sparse matrix. It is not an easy

question how efficient the paralleling sparse matrix operation can be. A good par-

allel algorithm should balance the communication and computation cost well.

In serial world, mainly there are two ways to solve linear problem: direct and it-

erative methods. Direct methods have two classes: elimination methods and or-

thogonalization methods. The elimination method is based on Gaussian elimina-

tion. The most straightforward method is to compute the Cholesky factorization of

normal equation (4).

 PS
T SPT = LLT (5)

where P is a permutation matrix. The solution is obtained by solving two triangu-

lar systems Ly = PST t and L
T (Pp) = y . Also we can ignore the symmetric property

of the normal equation, and do LU factorization directly. However, in both meth-

ods, if S is sparse, there is a fill-in issue during the factorization. In order to keep

the sparsity, methods of reordering the pivots are developed, such as Peters-

Wilkinson decomposition and dynamic reordering.

Another direct method is based on orthogonalization. The basic idea is that there

exists an essentially unique factorization for any M N matrix A
A =QU (6)

where Q is an orthogonal matrix and U is upper triangular. This kind of method

has higher stability in ill conditioned cases. Small eigenvalues or singular values

can be eliminated during the decomposition. The simplest of this method is the

modified Gram-Schmidt (MGS) method. Also Householder transformation or

Givens transformation can be used to obtain equation (6).

Most iterative methods used in linear systems is based on conjugate gradient

method, such as CGLS, LSQR and so forth. Compared with direct method, itera-

tive methods need less storage and can be better controlled during the iteration.

As to sparse matrix, direct methods often have fill-in problems and the index re-

ordering process is relatively complex. So it may not perform as well as on dense

systems.

4. LSQR Method

Considering my problem, in which S is very large, very sparse and ill conditioned,

the storage and stability are both important. LSQR method, which was proposed

by Paige in 1982, is a winner among those methods. I don’t need to trace the reor-

dering stuff in parallelized code, which is not quite easy. However, iterative

method cost more time on communication, because at step, the new vector need to

be updated.

LSQR method is a derivation of conjugate gradient method. Paige first found the

neat relationship between two bidiagonalization results from Lanczos process. He

also compared LSQR with other methods in his paper and concluded that LSQR

method had higher stability. The algorithm of LSQR is below.

LSQR Algorithm:

Giving equation Ax = b

1. Initialize

1u1 = b, 1v1 = ATu1, w1 = v1, x0 = 0

 1 = 1, 1 = 1

 where i, i > 0 and vi =1, ui =1

2. For i=1, 2, 3, … repeat steps 3-6

3. Continue the bidiagonalization

i+1ui+1 = Avi iui

i+1vi+1 = ATui+1 i+1vi

4. Construct and apply next orthogonal transformation

i = (i
2

+ i+1
2)1/ 2 ci = i / i

si = i+1 / i i+1 = si i+1

 i+1 = ci i+1 i = ci i

 i+1 = si i

5. Update x,w
xi = xi 1 + (i / i)wi

wi+1 = vi+1 (i+1 / i)wi

6. Test for convergence

5. Analysis of Sparse Matrix-Vector multiplication

In tomography equation Ax = b, A is very sparse but vectors x,b are dense. In

practice, non-zero entries of A distribute quite evenly in rows. On the other hand,

the most time-consuming part of LSQR algorithm is step 3 and step 5, which cor-

respond sparse matrix multiplication and vector addition, respectively. Dense vec-

tor addition is relatively easy to parallelize, so the key to parallelize LSQR

method is to parallelize sparse matrix vector multiplication.

One of storage formats of sparse matrices is Harwell-Boeing format, compressed

row storage (CRS), which stores non-zeros row-wise contiguously. A sparse ma-

trix is stored in 3 arrays, shown in Figure 2. One is to store non-zeros, while the

others store the column index of each non-zeros and the index of first non-zero in

each row, respectively. The total storage is NNZ real numbers and NNZ+N+1 in-

tegers, where NNZ is the number of non-zeros and N is the number of rows.

Fig. 2 CRS format of sparse matrices

In CRS format, matrix-vector multiply yi = Aij x j can be represented as the fol-

lowing:

for each row i

 for k=ptr[i] to ptr[i+1]-1

 y[i]=y[i]+val[k]*x[ind[k]]

end

The matrix-vector multiply yi = Aij
T x j in step 3 of LSQR algorithm can be repre-

sented as:

for each row i

 for k=ptr[i] to ptr[i+1]-1

 y[ind[k]]=y[ind[k]]+val[k]*x[i]

end

In serial algorithm, the performance of SpMV highly depends on machine, kernel

and matrix structure. Good data structure may speed it up surprisingly, for in-

stance diagonal matrices. From Fig. 3 we can see that the peak speed of SpMV on

scalar tuned machine is only about 20%. Actually the bottleneck of SpMV is due

to time of fetching data from memory. In order to improve the performance, for

certain matrices, the non-zeros can be stored by block other than individually. The

storage can drop down and the speed can increase by 50% ~ 300%. The block

size r c can be searched in run-time to minimize the time cost. However this

method is based on case by case. As to an arbitrary matrix, extra reordering or

fill-in cost can be introduced. Back to my problem, the properties of matrix A

need to be examined firstly before paralleling implement.

Fig. 3 serial performance of SpMV

6. Parallelism of SpMV

The most important issues of parallelism are locality and load balance. In order to

keep load balance, the partitions should be by non-zeros counts, not merely by

rows or columns. On the other hand, to keep locality, “owner computes” rule is

employed, which means that processor k stores y[i],x[i] and row i of A for all i in

Nk and computes y[i] = Ai x .

As to the matrix A in our problem, the number of non-zeros in each row is quite

the same. So 1D partition by row is a natural way. A bad news is that it is hard to

make high locality because the non-zeros distribute very evenly, shown in Fig. 4.

The typical sparcity is around 1%. Although it is not as sparse as band diagonal

matrices, matrix-vector multiplication can speed up by more than ten times (e.g.

Fig. 5).

Fig. 4 non-zeros of A. nnz=10020, sparsity=0.0167

Assuming A is M N , and the sparsity is , then the number of non-zero ele-

ment in each row is N , if non-zeros distribute evenly. If we have np processors

and divide A by rows (regardless of scale issues), the communication cost of each

processor is O(N /np) + O(2 MN /np) . Here O(N /np) is the cost of sending the

value of vector x , and O(2 MN /np) is the communication cost of matrix A por-

tion. The computation cost of each processor is O(2 MN /np) .

Fig. 5 Time cost of dense matmul and sparse matmul. Red line is

dense case and Blue one is sparse. Sparsity is 0.01

Fig. 6 Time cost of SpMV in parallel. Sparsity of matrices is 0.01.

In this naïve parallel algorithm, communication cost is higher than computation

cost. The highest parallel efficiency is no more than 0.5. Figure 6 shows the par-

allel efficiency with the number of processors. We can see that the time cost does

not decrease monotonically as expected. It seems there is a tradeoff between

communication cost and computation cost. Index searching of vector x and the

network structure effect the computing efficiency remarkably, especially more

processors are used.

7. Conclusion

In this report, I analyze the serial algorithm of tomography, and parallelize the

codes using different strategies in different steps of the algorithm. In ray-tracing

part, a simple embarrassing parallelism is good enough, for it is a typical SIMD

case. Another part of tomography is a sparse least square problem. Here I choose

LSQR after comparing with other methods. The core of paralleling implementa-

tion of LSQR is sparse matrix vector multiplication (SpMV). Here I use 1D row

partition given the special structure of the matrix.

From the test results of SpMV, we can see that SpMV parallelism is a quite com-

plex problem. It depends not only the structure of matrices but also the hardware

and network issues. It is also a very interesting work to compare direct and itera-

tive methods, or even hybrid methods dealing with sparse least square problems.

Reference

Bjorck A. and Duff I. S., A direct method for the solution of sparse linear least

squares problems, Linear Algebra and Its Applications, Vol. 34, 1980, 43-67

Paige C. and Saunders M. A., LSQR: an algorithm for sparse linear equations and

sparse least squares, ACM Trans. Math. Software, Vol 8, No. 1, 1982, 43-71

Golub G. H. and Van Loan C. F, Matrix computations, 1983, The Johns Hopkins

University Press, Baltimore, Maryland

