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I tested several different optimizations of parallel prefix on the SiCortex, rejecting a few and 

confirming the benefits of a novel optimization: the laddered data distribution.  I discuss the motivation 

for optimization, the benchmark framework for testing optimizations, the results of a few standard 

optimizations, and two novel optimizations and their benefits.

Motivation

The ultimate belief that motivated this project is that parallel programming should be easier.  I 

believe a great way to accomplish this would be to have a cross-compiler that can convert easy-to-write 

functional code into low-level parallelized code across an arbitrary number of processors. I set out to 

build a compiler that could convert from a home-brew functional language to C/MPI code.  Although I 

still believe this goal is possible, I had to maintain the project timeline and so was forced to scope down 

a bit.  As part of the early compiler work, I found that a recurring theme was recursive functions that 

seemed difficult to parallelize at first glance.  Over time, I realized that these could often be rewritten 

with a kind of parallel prefix, as long as each operation applied within the recursive function is 

associative.  As I looked closer at the standard parallel prefix algorithm, it seemed that there were many 

opportunities for optimization.  This is ultimately what my project became about: the optimization of 

parallel prefix, versus a standard MPI Scan approach.

Benchmark and Framework

In order to properly test my attempted optimizations, I designed a consistent framework in 

which I could test the changes.  The attempted optimizations would be tested against a standard MPI 

implementation of a cumulative sum.  This benchmark implementation had four main steps: a local 

cumulative sum, pass the total sums across the processors, another local sum, and passing back the 

final result to the root processor.



Specifically, the tests would run a cumulative sum over 200 billion integers, across 600 

processors on the available SiCortex machine.  These 200 billion integers are split (nearly) evenly 

across the 600 processors, and the test framework considers the most important measurement of time to 

be from the first integer added on processor one to the last integer added on processor 600 and sent 

back to processor one.  This is roughly a start to finish measurement of the whole computation.

Standard Optimizations

The standard optimizations were the natural first step, using things like the compiler -O3 flag, 

and MPI Scan instead of manually handling message passing and receiving.  Even these simple 

optimizations had some surprising results.

The compiler flag showed a fairly dramatic improvement in speed, giving a roughly 5x 

improvement over no flag.  Part of the compiler flag's effect was to nullify the benefits of a more 

esoteric optimization: total before incremental sums.  The optimization was intended to save time by 

avoiding the storage call during the incremental sums of the first local cumulative sum.  The storage of 

incremental sums would only be done on the second pass of local cumulative sums.  At first, this 

optimization seemed to be doubling the speed of the first step.  Later, this “total before incremental” 

optimization was tested with the compiler flag on, and the benefit evaporated.  

The MPI Scan standard passes data from one processor to the next, using a standard operation 

to accumulate the data as it goes (the operation being sum in this case).  It is not difficult to implement 

this instead by using MPI Send and Receive calls from one processor to the next.  So I tested the 

difference between MPI Scan and the Send/Receive calls.  It turns out that Scan typically gives a 2 

percent boost measuring the time for data to pass from the first processor to the last, but it has a 

significant downside: it is a blocking call.  MPI Receive calls are also blocking, but they return as soon 

as the specified unit of data is received.  MPI Scan blocks on every processor until the final unit of data 



reaches the final processor.  The local processors cannot continue with their second round of local 

cumulative sums until the MPI call returns.  So they get delayed much longer when sending data via 

MPI Scan, because they have to wait for the data to traverse 600 processors instead of just one.  Using 

this data, I abandoned MPI Scan, and left on the compiler flag for further optimizations.

Communication Optimizations

I attempted two major optimizations on the communication strategy that differed from the 

standard ones above.  I tried a broadcast optimization and a laddered data distribution.  These 

optimizations had to do with the flow of communication and taking advantage of opportunities caused 

by communication latency.

The broadcast optimization worked by sending results to all relevant processors as soon as they 

are ready.  This should save time because it is much faster to add a few extra numbers than to wait for 

the cumulative communication delay.  For example, when using the broadcast method, the nth 

processor has to add the results coming in from processors 1 through n-1 (instead of only adding the 

result from the n-1 processor).  However, it only has to wait one length of communication latency, 

saving n-2 communication latency steps.  The downside is that there are many more total 

communications, adding dramatically to total bandwidth.  The total bandwidth used is now n(n-1)/2 

instead of n-1, meaning there is a factor of n/2 more bandwidth (in this case 300 times more).  Using 

the SiCortex, which is specified to have a wide bandwidth, this may have been a worthwhile tradeoff. 

During the tests, it turns out that the broadcast method turned out to be significantly slower.  Broadcast 

was 22.7 percent slower than the standard optimizations above.

The laddering distribution is the main success of this project.  It works by taking advantage of 

the latency in the series of cumulative communication steps required.  There is wasted time in the later 

processors while waiting for the total sum to propagate from the first processor.  This wasted time is 



because every processor has the same amount of data, and so will finish processing that data at roughly 

the same time.  Using this fact, you can reduce computation time by laddering the data, adding a bit 

more data on each consecutive processor to fill the gap of wasted time.  This strategy leads to a 15.6 

percent improvement in start to finish computation time.

A Closer Look at Data Laddering

There is waste in even data distributions.  After the second processor finishes calculating the 

local cumulative sum, it waits for one length of communication latency to receive the result from the 

first processor.  Then the second processor adds the sum to its own and passes it on.  The third 

processor waits after its own calculation for a total of two lengths of communication latency, plus one 

operation.  In most cases, the time cost of one communication latency overwhelms the cost of a single 

operation (a sum in this case).  So the nth processor has to wait for a total of roughly n-1 lengths of 

communication latency.  During this wait, the nth processor does not have any more operations to do, 

so it sits idle waiting for the communication.  This is what I am trying to optimize by laddering the data 

distribution.  If there is a little more data on the second processor than on the first, then it will have 

something to do while it waits for the result from the first processor.  Then there should be even more 

data on the third processor, because it has to wait even longer.

The amount of extra data added to each processor should be roughly equivalent to the number 

of calculation operations the processor can do in the amount of a single communication latency.  In 

tests, the ratio of operations to communication is about 25,000.  In other words, processor 2 should be 

able to compute an extra 25,000 operations while waiting for the communication to arrive.  Processor 3 

should be able to do an extra 50,000 operations while waiting for the communication, and so on.  So 

laddering requires a preprocessing step which calculates how to ladder the data properly.  An 

interesting side effect of this preprocessing step is that it can actually calculate a maximum worthwhile 



number of processors to use.  If the first processor starts with 25k, and there is an increase of 25k in 

each processor after that, and there is a total of 150k data, then there is no point in having more than 

three processors, it would just slow things down because of communication costs.  If you request 10 

processors when calling this code, it will automatically downgrade your request to only three.

In testing, I tried a variety of settings for the calculation to communication ratio including 6k, 

12k, 50k, and 75k.  All of them performed worse than the predicted optimal setting of 25k.  

The total amount of theoretical time possible with this optimization is related only to the ratio of 

calculations to communication and the number of processors used.  The total number of computations 

hidden in the otherwise idle time is roughly 25k * p*(p-1)/2 or 4.5 billion computations in 600 

processors.  These computations do not add to the start to finish time of the original computation, so in 

a sense come for free.  They can be removed from the original block of evenly distributed data, 

meaning each processor can get 25k * (p-1) / 2 = 7.5 million less data points, reducing the computation 

time significantly.

Unfortunately, data laddering takes a bit of preparatory work.  It requires the programmer to test 

the ratio of calculation to computation, or at least have a reasonable guess before testing out some 

reasonable options.  Besides that, there is no reason this concept could not be incorporated into a 

library just as accessible as MPI Scan.  The nature of the computation is such that it is not worthwhile 

for one-time script type calculations (because of the programmer overhead of determining the optimal 

laddering ratio), but it could be very useful for long-running calculations or computations that need to 

be repeated often.

So the ultimate suggestion for optimizations of parallel prefix are to stick exclusively with the 

compiler flag optimization and data laddering.  The combination of these two seem to provide the 

fastest possible implementation of parallel prefix, among the optimizations tried.
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