
Lecture 11

Mesh Generation

An essential step in scientific computing is to find a proper discretization of a continuous domain.
This is the problem of mesh generation. Once we have a discretization or sometimes we just say a
“mesh”, differential equations for flow, waves, and heat distribution are then approximated by finite
difference or finite element formulations. However, not all meshes are equally good numerically.
Discretization errors depend on the geometric shape and size of the elements while the computa-
tional complexity for finding the numerical solution depends on the number of elements in the mesh
and often the overall geometric quality of the mesh as well.

The most general and versatile mesh is an unstructured triangular mesh. Such a mesh is
simply a triangulation of the input domain (e.g., a polygon), along with some extra vertices,
called Steiner points. A triangulation is a decomposition of a space into a collection of interior
disjoint simplices so that two simplices can only intersect at a lower dimensional simplex. We
all know that in two dimensions, a simplex is a triangle and in three dimensions a simplex is a
tetrahedron. A triangulation can be obtained by triangulating a point set, that form the vertices
of the triangulation.

Even among triangulations some are better than others. Numerical errors depend on the quality

of the triangulation, meaning the shapes and sizes of triangles.
In order for a mesh to be useful in approximating partial differential equations, it is necessary

that discrete functions generated from the mesh (such as the piecewise linear functions) be capable
of approximating the solutions sought. Classical finite element theory [18] shows that a sufficient
condition for optimal approximation results to hold is that the minimum angle or the aspect ratio of
each simplex in the triangulation be bounded independently of the mesh used; however, Babuska [4]
shows that while this is sufficient, it is not a necessary condition. See Figure ?? for a triangulation
whose minimum degree is at least 20 degree.

In summary, properties of a good mesh are:

• Fills the space

• Non-overlapping (
∑

areas = total area)

• Conforming Mesh (every edge shared by exactly 2 triangles)

• High Quality Elements (approximately equilateral triangles)

Automatic mesh generation is a relatively new field. No mathematically sound procedure for
obtaining the ‘best’ mesh distribution is available. The criteria are usually heuristic.

The input description of physical domain has two components: the geometric definition of the
domain and the numerical requirements within the domain. The geometric definition provides the

1



2 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 11.1: A well-shaped triangulation

boundary of the domain either in the form of a continuous model or of a discretized boundary
model. Numerical requirements within the domain are typically obtained from an initial numerical
simulation on a preliminary set of points. The numerical requirements obtained from the initial
point set define an additional local spacing function restricting the final point set.

An automatic mesh generator try to generate an additional points to the internally and bound-
ary of the domain to smooth out the mesh generation and concentrate mesh density where necessary
- to optimize the total number of mesh points.

11.1 How to Describe a Domain?

The most intuitive and obvious structure of a domain (for modeling a scientific problem) is its
geometry.

One way to describe the geometry is to use constructive solid geometry formula. In this ap-
proach, we have a set of basic geometric primitive shapes, such as boxes, spheres, half-spaces,
triangles, tetrahedra, ellipsoids, polygons, etc. We then define (or approximate) a domain as finite
unions, intersections, differences, and complementation of primitive shapes, i.e., by a well-structured
formula of a finite length of primitive shapes with operators that include union, intersection, dif-
ference, and complementation.

An alternative way is to discretize the boundary of the domain, and describes the domain as
a polygonal (polyhedral) object (perhaps with holes). Often we convert the constructive solid
geometry formula into the discretized boundary description for mesh generation.

For many computational applications, often, some other information of a domain and the prob-
lem are equally important for quality mesh generation.

The numerical spacing functions, typically denoted by h(x), is usually defined at a point x by
the eigenvalues of the Hessian matrix of the solution u to the governing partial differential equations
(PDEs) [4, 95, 69]. Locally, u behaves like a quadratic function

u(x + dx) =
1

2
(xHx

T ) + x∇u(x) + u(x),

where H is the Hessian matrix of u, the matrix of second partial derivatives. The spacing of mesh
points, required by the accuracy of the discretization at a point x, is denoted by h(x) and should
depend on the reciprocal of the square root of the largest eigenvalues of H at x.
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Figure 11.2: Triangulation of well-spaced point set around a singularity

When solving a PDE numerically, we estimate the eigenvalues of Hessian at a certain set of
points in the domain based on the numerical approximation of the previous iteration [4, 95]. We
then expand the spacing requirement induced by Hessian at these points over the entire domain.

For a problem with a smooth change in solution, we can use a (more-or-less) uniform mesh
where all elements are of roughly equal size. On the other hand, for problem with rapid change in
solution, such as earthquake, wave, shock modeling, we may use much dense grinding in the area
of with high intensity. See Fig 11.2.So, the information about the solution structure can be of a
great value to quality mesh generation.

Other type of information may come in the process of solving a simulation problem. For example,
in adaptive methods, we may start with a much coarse and uniform grid. We then estimate the
error of the previous step. Based on the error bound, we then adaptively refine the mesh, e.g.,
make the area with larger error much more dense for the next step calculation. As we shall argue
later, unstructured mesh generation is more about finding the proper distribution of mesh point
then the discretization itself (this is a very personal opinion).

11.2 Types of Meshes

• Structured grids divide the domain into regular grid squares. For examples finite difference
gridding on a square grid. Matrices based on structured grids are very easy and fast to
assemble. Structured grids are easy to generate; numerical formulation and solution based
on structured grids are also relatively simple.

• Unstructured grids decompose the domain into simple mesh elements such as simplices
based on a density function that is defined by the input geometry or the numerical require-
ments (e.g., from error estimation). But the associated matrices are harder and slower to
assemble compared to the previous method; the resulting linear systems are also relatively
hard to solve. Most of finite element meshes used in practice are of the unstructured type.

• Hybrid grids are generated by first decomposing the domain into non-regular domain and
then decomposing each such domain by a regular grid. Hybrid grids are often used in domain
decomposition.

Structured grids are much easy to generate and manipulate. The numerical theory of this
discretization is better understood. However, its applications is limited to problems with simple
domain and smooth changes in solution. For problems with complex geometry whose solution
changes rapidly, we need to use an unstructured mesh to reduce the problem size. For example,
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Figure 11.3: A quadtree

when modeling earthquake we want a dense discretization near the quake center and a sparse
discretization in the regions with low activities. It would be waste to give regions with low activities
as fine a discretization as the regions with high activities. Unstructured meshes are especially
important for three dimensional problems.

The adaptability of unstructured meshes comes with new challenges, especially for 3D problems.
However, the numerical theory becomes more difficult – this is an outstanding direction for future
research; the algorithmic design becomes much harder.

11.3 Refinement Methods

A mesh generator usually does two things: (1) it generates a set of points that satisfies both
geometric and numerical conditions imposed on the physical domain. (2) it builds a robust and
well-shaped meshes over this point set, e.g., a triangulation of the point set. Most mesh generation
algorithms merge the two functions, and generate the point set implicitly as part of the mesh
generation phase. A most useful technique is to generate point set and its discretization by an
iterative refinement. We now discuss hierarchical refinement and Delaunay refinement, two of the
most commonly used refinement methods.

11.3.1 Hierarchical Refinement

The hierarchical refinement uses quadtrees in two dimensions and octtrees in three dimensions.
The basic philosophy of using quad- and oct-trees in meshes refinements and hierarchical N-body
simulation is the same: adaptively refining the domain by selectively and recursively divide boxes
enable us to achieve numerical accuracy with close to an optimal discretization. The definition of
quad- and oct-tree can be found in Chapter ??. Figure 11.3 shows a quad-tree.

In quadtree refinement of an input domain, we start with a square box encompassing the
domain and then adaptively splitting a box into four boxes recursively until each box small enough
with respect to the geometric and numerical requirement. This step is very similar to quad-tree
decomposition for N-body simulation. However, in mesh generation, we need to ensure that the
mesh is well-shaped. This requirement makes mesh generation different from hierarchical N-body
approximation. In mesh generate, we need to generate a set of smooth points. In the context of
quad-tree refinement, it means that we need to make the quad-tree balanced in the sense that no
leaf-box is adjacent to a leaf-box more than twice its side length.
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Figure 11.4: A well-shaped mesh generated by quad-tree refinement

With adaptive hierarchical trees, we can “optimally” approximate any geometric and numerical
spacing function. The proof of the optimality can be found in the papers of Bern, Eppstein, and
Gilbert for 2D and Mitchell and Vavasis for 3D. Formal discuss of the numerical and geometric
spacing function can be found in the point generation paper of Miller, Talmor and Teng.

The following procedure describes the basic steps of hierarchical refinement.

1. Construct the hierarchical tree for the domain so that the leaf boxes approximate the numer-
ical and geometric spacing functions.

2. Balance the hierarchical tree.

3. Warping and triangulation: If a point is too close to a boundary of its leaf box then one of
the corners collapses to that point.

11.3.2 Delaunay Triangulation

Suppose P = {p1, . . . , pn} is a point set in d dimensions. The convex hull of d+1 affinely independent
points from P forms a Delaunay simplex if the circumscribed ball of the simplex contains no point
from P in its interior. The union of all Delaunay simplices forms the Delaunay diagram, DT (P ).
If the set P is not degenerate then the DT (P ) is a simplex decomposition of the convex hull of P .
We will sometimes refer to the Delaunay simplex as a triangle or a tetrahedron.

Associated with DT (P ) is a collection of balls, called Delaunay balls, one for each cell in DT (P ).
The Delaunay ball circumscribes its cell. When points in P are in general position, each Delaunay
simplex define a Delaunay ball, its circumscribed ball. By definition, there is no point from P lies
in the interior of a Delaunay ball. We denote the set of all Delaunay balls of P by DB(P ).

The geometric dual of Delaunay Diagram is the Voronoi Diagram, which of consists a set of
polyhedra V1, . . . , Vn, one for each point in P , called the Voronoi Polyhedra. Geometrically, Vi is
the set of points p ∈ IRd whose Euclidean distance to pi is less than or equal to that of any other
point in P . We call pi the center of polyhedra Vi. For more discussion, see [78, 31].

The DT has some very desired properties for mesh generation. For example, among all triangu-
lations of a point set in 2D, the DT maximizes the smallest angle, it contains the nearest-neighbors
graph, and the minimal spanning tree. Thus Delaunay triangulation is very useful for computer
graphics and mesh generation in two dimensions. Moreover, discrete maximum principles will only
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exist for Delaunay triangulations. Chew [17] and Ruppert [84] have developed Delaunay refinement
algorithms that generate provably good meshes for 2D domains.

Notice that an internal diagonal belongs to the Delaunay triangulation of four points if the sum
of the two opposing angles is less than π.

A 2D Delaunay Triangulation can be found by the following simple algorithm: FLIP algorithm

• Find any triangulation (can be done in O(n lg n) time using divide and conquer.)

• For each edge pq, let the two faces the edge is in be prq and psq. Then pq is not an local
Delaunay edge if the interior the circumscribed circle of prq contains s. Interestingly, this
condition also mean that the interior of the circumscribed circle of psq contains r and the
sum of the angles prq and psq is greater than π. We call the condition that the sum of the
angles of prq and psq is no more than π the angle condition. Then, if pq does not satisfy the
angle property, we just flip it: remove edge pq from T, and put in edge rs. Repeat this until
all edges satisfy the angle property.

It is not too hard to show that if FLIP terminates, it will output a Delaunay Triangulation.
A little addition geometric effort can show that the FLIP procedure above, fortunately, always
terminate after at most O(n2) flips.

The following is an interesting observation of Guibas, Knuth and Sharir. If we choose a random
ordering π of from {1, ..., n} to {1, ..., n} and permute the points based on π: pπ(1) . . . pπ(n). We
then incrementally insert the points into the the current triangulation and perform flip if needed.
Notice that the initial triangulation is a triangle formed by the first three points. It can be shown
that the expected number of flips of the about algorithm is O(n log n). This gives a randomized
O(n log n) time DT algorithm.

11.3.3 Delaunay Refinement

Even though the Delaunay triangulation maximize the smallest angles. The Delaunay triangulation
of most point sets are bad in the sense that one of the triangles is too ’skinny’. In this case, Chew
and Ruppert observed that we can refine the Delaunay triangulation to improve its quality. This
idea is first proposed by Paul Chew. In 1992, Jim Ruppert gave a quality guaranteed procedure.

• Put a point at the circumcenter of the skinny triangle

• if the circum-center encroaches upon an edge of an input segment, split an edge adding its
middle point; otherwise add the circumcenter.

• Update the Delaunay triangulation by FLIPPING.

A point encroaches on an edge if the point is contained in the interior of the circle of which the
edge is a diameter. We can now define two operations, Split-Triangle and Split-Segment

Split-Triangle(T)

• Add circumcenter C of Triangle T

• Update the Delaunay Triangulation (P ∪ C)



Preface 7

Split-Segment(S)

• Add midpoint m

• Update the Delaunay Triangulation (P ∪ M)

The Delaunay Refinement algorithm then becomes

• Initialize

– Perform a Delaunay Triangulation on P

– IF some segment, l, is not in the Delaunay Triangle of P , THEN Split-Segment (l)

• Repeat the following until α > 25◦

– IF T is a skinny triangle, try to Split(T)

– IF C of T is ’close’ to segment S then Split-Seg(S)

– ELSE Split Triangle (T)

The following theory was then stated, without proof. The proof is first given by Jim Ruppert in
his Ph.D thesis from UC. Berkeley.

Theorem 11.3.1 Not only does the Delaunay Refinement produce all triangles so that MIN α >

25◦, the size of the mesh it produces is no more than C ∗ Optimal(size).

11.4 Working With Meshes

• Smoothing: Move individual points to improve the mesh.

• Laplacian Smoothing: Move every element towards the center of mass of neighbors

• Refinement: Have a mesh, want smaller elements in a certain region. One option is to put a
circumscribed triangles inside the triangles you are refining. Another approach is to split the
longest edge on the triangles. However, you have to be careful of hanging nodes while doing
this.

11.5 Unsolved Problems

There still is no good algorithm to generate meshes of shapes. There has been a fair amount of
research and this is an important topic, but at the current time the algorithms listed above are
merely best efforts and require a lot of work and/or customization to produce good meshes. A
good algorithm would fill the shape with quadrilaterals and run without any user input, beyond
providing the geometry to be meshed. The holy grail of meshing remains filling a 3-D shape with
3-D blocks.


