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1. Introduction 
 
In materials modeling, we often need to follow the evolution of the materials by 
calculating the positions of all the atoms. For crystalline solid state materials, initially 
all the atoms are at well-defined lattice positions. Each atom is under the influence of 
other atoms. The forces of other atoms will cause the atom to move. This is a complex 
multi-body problem and does not have an analytic solution. As a result, computer is 
often used to simulate the evolution of the system. 
 
This final project will focus on one particular material: Gold. Both serial code and 
parallel code will be produced to simulate the system. Code will be written in C. In 
the parallel case, MPI is used. The accuracy of the parallel code is tested by 
comparing its results to the results of the serial code; the accuracy of the serial code is 
assumed. In reality, the accuracy of the serial code should be tested by comparing the 
results with physical reality, but this is a course on parallel computing, so we’ll focus 
on the parallel code instead. 
 
The performance of the parallel code is compared with the serial code. We have also 
measured the performance of the parallel code as number of processes increases; as 
the system size increases; and as the neighbor list updating interval changes. The 
neighbor list updating interval will be explained later. The performance measurement 
results are shown in section 6. 
 
2. The system to simulate 
 
We will use Gold as our model system. It is actually a very simple system because 
there is only one type of atoms in the system. Here are some experimental properties 
of gold (from WebElements: http://www.webelements.com/) 
 
Name: gold 
Symbol: Au 
Atomic weight: 196.96655 
Structure: ccp (cubic close-packed), with cell size: a = b = c = 4.0782 Angstrom. ccp 
is also called fcc: face-centered cubic. 
Bulk modulus: 220 GPa 
Melting point: 1337.33 K 
 
We will use Lennard-Jones potential to model the force between atoms of the system. 
In Lennard-Jones potential, forces exist between every pair of atoms, and the force 
(direction and magnitude) depends only on the distance between the two atoms. This 
force is not affected by the presence or non-presence of other atoms. This is why this 
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potential is called pair potential. If the distance between atoms is r, the potential 
energy E is: 
 
E = A/r12 - B/r6 
 
Here r is in unit of angstrom, E is in unit of eV, and A and B are two parameters to be 
chosen. Here A and B are chosen to be: 
 
A = 158675.062040 (eV*angstrom12); B = 463.262145 (eV*angstrom6) 
 
Put these potential parameters into GULP (a software which is irrelevant to what we 
are trying to do in this course), we can calculate that the lattice constant: 4.078200 
(Angstrom), and the bulk modulus: 219.99974 (GPa).  These are very close to the 
experimental values given above. This is of no surprise because we have fitted the 
potential parameters (the values of A and B) to these two particular properties. 
 
Here are some pictures of the Gold (Au) crystal structure: 
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Atoms are in a regular crystal lattice. 
 
Here is a graph of the potential chosen: 
 

 
From the the potential graph, it can be seen that the potential value goes to zero very 
quickly. Out of a certain chosen cutoff distance, the potential energy and force 
between the two atoms are so small that they can be ignored all together. This is a 
great speed up for computer code: without this, we have to calculate the influence of 
every other atoms on a given atom; now we only need to consider the atoms within a 
certain sphere. Because the number of atoms in this sphere is much smaller than the 
total number of atoms in the system, we get a computational speed-up. 
 



Page 5 of 17 

We will use a cutoff of 6 angstroms here. That is, atoms with distance greater than 6 
angstrom are considered not exerting any force on each other. The Au system has a 
lattice constant of 4.0782 angstrom. This is the distance of the cubic unit cell, not 
between the closest neighbors. In face-centered cubic structure, the distance between 
closest neighbors is 4.0782 / 2 ; distance between second closest neighbors is 
4.0782; and distance between third closest neighbors is 4.0782 * 2 , which is 5.767 
angstroms. So a cutoff of 6 angstrom has already included the influence of third 
nearest neighbor, which is sufficient for this non-ionic system. Also, we can calculate 
the potential energy at r = 6 directly use the formula E = A/r12 - B/r6, the value is: 0.01 
eV, which is indeed negligible. 
 
3. The serial code 
 
The serial code is in source file serial.c. It reads input from a given file and writes 
results to a given output file. The input and output files are specified as command line 
parameters. The first command line parameter is input file name; the second is output 
file name. This code needs only two command line parameters. 
 
The format of the input file is as follows. The parameters specified in the input file 
will be explained after the description of the input file format. 
 
1st line: super cell size, 3 integers. 
2nd line: 
  1st: time interval per step, in units of ps (pico seconds, 10-12 seconds), double type. 
  2nd: equilibration time step, integer type. 
  3rd: velocity scaling interval, integer type. 
  4th: total time step, integer type. 
3rd line: 
  1st: temperature, in unit of Kelvin, double type. 
  2nd: force cutoff value, in unit of angstrom, double type. 
4th line: 
  1st: start time step of dumping atom positions to output file, integer type. 
  2nd: time step interval of dumping atom positions to output file, integer type. 
5th line: 
  time step interval of updating neighbor list. 
 
Here is the explanation of what these input parameters mean: 
 
Super cell size: A unit cell of Gold contains 4 atoms. As described before, it has a 
face-centered cubic structure. The 4 atoms of the unit cell are located at (0, 0, 0), (0.5a, 
0.5b, 0), (0.5a, 0, 0.5c) and (0, 0.5b, 0.5c), here a = b = c = 4.0782 angstroms. To 
build the super cell for our simulation, we need to replicate the unit cell in x, y and z 
directions. For example, specifying a super size of 10*10*10, we have totally 4000 
atoms in our system. 
 
Time interval per step: we will advance the system in discrete time intervals, this is 
the value of the step size. 
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Equilibration time step: we are simulating the system at a given temperature. At the 
start of the simulation, we will give all the atoms in the system velocities according to 
the Maxwellian Velocity Distribution. The system temperature is determined by the 
kinetic energy of the atoms, which is determined by the velocities of the atoms. As the 
evolution of system, the system will move away from the designated temperature. To 
move the system back to the desired temperature, we will scale the velocities of all 
atoms according to the desired temperature. This artificial scaling occurs only at the 
beginning of the simulation. For example, if you specify equilibration time step to be 
500, then the velocity scaling will only occur at the beginning 500 time steps. 
 
Velocity scaling interval: as described above, we need to re-scale atom velocities at 
the beginning of the simulation. We don’t need to scale velocity every time step. This 
parameter specifies the time step interval to scale velocities. 
 
Total time step: the total time step to run. 
  
Temperature: the system temperature. 
 
Force cutoff value: atoms with distance longer than this cutoff value are considered 
not to have any force on each other. 
 
The start time step of dumping atom positions to output file: start at this time step, 
atom positions are outputted for later analysis. This start time step generally should be 
larger than equilibration time step, because during equilibration we are scaling 
velocities and the system is considered not to be in stable state. 
 
Time step interval of dumping atom positions to output file: the code will output atom 
positions every few time steps, according to the value of this setting. 
 
Time step interval of updating neighbor list: we mentioned before that a list of 
neighbors within force cutoff is maintained to reduce the computation cost. This 
neighbor list needs to be updated periodically because atoms move around. We adapt 
a simple method here: the user specify the time step interval to update neighbor list. 
Alternatively, we could devise some criteria to automatically update neighbor list. For 
example, we can decide that the neighbor list is updated whenever atoms are moved 
far away enough from its position during the last updating of neighbor list. How far 
away will trigger the updating of neighbor list could again be a configurable 
parameter. 
 
If the system is in high temperature, the atoms are moving fast, so the updating 
interval should be relatively short; on the other hand, if the system is in low 
temperature, the updating interval could be long for better performance. 
 
Note that no error checking is performed on the input file, so if you specified a mal-
formatted input file, the effect is undefined. 
 
The format of the output file is as follows: 
 
First part is an echoing of input parameters. This echoing can be used to make sure 
that the input parameters are read correctly by the program. 
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After that, the output file contains the dump of positions of the atoms. The first line of 
each dump will be “timestep n time”, where n is the time step and time is the time 
elapsed since start of the simulation. For example, if time interval is 0.001 ps, and one 
of the atom positions dump occurred at time step 1000, then this line will be: 
 
timestep 1000 1 
 
After this, the positions of the atoms are outputted one-by-one. Each atom is outputted 
on two lines. The first line will be the index of the atom; the second line will contain 3 
numbers, which will be the x, y and z coordinates of the atom at the time. 
 
After describing the input and output file format, now we will give a brief description 
of the serial source code itself. 
 
In the unit cell, the lattice constant is a = 4.0782. We have 4 atoms at: 
(0, 0, 0) 
(0.5 * a, 0.5 * a, 0) 
(0.5 * a, 0, 0.5 * a) 
(0, 0.5 * a, 0.5 * a) 
 
These 4 atoms are considered to be in cell (0, 0, 0). We need to generate the positions 
of atoms in other cells. This is very easy: just add multiple of the lattice constant to 
the original coordinates of the 4 atoms, based on which cell they are in. For example, 
to generate the all atoms in cell (1, 1, 2), we only need to add a to x coordinates, a to y 
coordinates, and 2*a to z coordinates. 
 
Repeat this process to all cells in the super cell, the initial coordinates of all atoms are 
generated. 
 
Next step is to generate the initial velocities according to Maxwellian distribution and 
to the temperature specified in the input file. Maxwellian distribution is actually 
Gaussian distribution, so we will first generate velocities using Gaussian distribution 
with mean 0.0 and standard deviation 1.0. Later we will scale the velocities according 
to the given temperature value. 
 
To generate Gaussian random numbers, the code uses the polar method of G. E. P. 
Box, M. E. Muller, and G. Marsaglia, as described by Donald E. Knuth in The Art of 
Computer Programming, Volume 2: Seminumerical Algorithms, section 3.4.1, 
subsection C, algorithm P. This random number generator is coded in function 
nextGaussianRand(). 
 
To test the Gaussian random number generator, I generated 4000 numbers using it, as 
shown in the following graph: 
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We can see the signature bell shape in the figure. 
 
So the first step in generating initial velocities is simply call the random number 
generating method: 
 
  for (i = 0; i < nAtoms; ++i) vx[i] = nextGaussianRand(); 
  for (i = 0; i < nAtoms; ++i) vy[i] = nextGaussianRand(); 
  for (i = 0; i < nAtoms; ++i) vz[i] = nextGaussianRand(); 
 
After that, we do a velocity scale according to the given temperature. 
 
  velocityScale(vx, vy, vz, nAtoms, temperature); 
 
This function is also called during the equilibration steps when the velocities are 
scaled according to the given temperature. The algorithm to scale the velocities is 
quite simply. From the equi-partition law, at temperature T, each atom should have 
kinetic energy 3/2 kT, where k is the Boltzmann constant. If we have totally nAtoms 
atoms, the total kinetic energy should be: targetE = 3/2 kT * nAtoms. The real kinetic 
energy of an atom can be calculated as ½ mv2. Sum over all atoms, we get the real 
kinetic energy realE. The scaling factor will be targetE / realE. Because we squared 
the velocity when calculating kinetic energy, the scaling factor for velocity will be 
sqrt(targetE/realE). Each velocity is then multiplied by this scaling factor. 
 
We then enter the main loop of the simulation. In every time step, we check whether 
the velocity needs to be re-scaled, according to the parameter given in the input file. 
We will also check to see whether the neighbor list needs to be updated. 
 
In both calculating neighbor list and calculating the force between two atoms, we 
need to calculate the distance between two atoms. Periodic boundary condition is used 
here. The real material contains in the order of 1023 atoms, which is considered to be 
infinity comparing to what we can actually simulate. So the simulation super cell is 
not in isolation. We can imagine that the simulation is repeated infinitely in three 
dimensions. So every atom has infinite images in the space. When an atom leaves the 
simulation cell on one side, its image comes in from another side. 
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To calculate the distance between atom A and atom B, we consider the distances 
between all of A’s images (including A) and all of B’s images (including B), and the 
shortest distance of all these distances will be the distance we will use. This is based 
on the assumption that the effect of the second and higher order nearest images pairs 
can be neglected comparing the nearest pair of images. Because the repetition unit is 
the super cell, when we choose the super cell, we ought to make it large enough such 
that only nearest images pair need to be considered (yet small enough so that the 
simulation can be done fast). 
 
A one-dimension example is used to illustrate how to calculate distance when periodic 
boundary condition is used. Say we have a simulation box of size length Len in this 
one dimension example. Atom i is at x[i], and atom j is at x[j]. Normally, the distance 
between x[i] and x[j] will be the absolute value of xDis = x[j] – x[i]. To incorporate 
periodic boundary condition, we need to use: xDis – Len * floor(xDis / Len + 0.5). 
Floor is the mathematical function that calculates the largest integer less than or equal 
to the given parameter. 
 
For example, if Len is 10, x[i] is at 1, x[j] is at 9, then x[j] – x[i] = 8. However, x[i]’s 
image is at 1 + 10 = 11, so the nearest distances between images pairs is 11 – 9 = 2. 
Using the formula, we have xDis – Len * floor(xDis/Len + 0.5) = 8 – 10 * floor(8 / 10 
+ 0.5) = 8 – 10 * floor (1.3) = 8 – 10 = -2, which has the correct absolute value we 
want. 
 
Do similar calculations for the y and z dimensions, we can get yDis and zDis. The 
distance can then be calculated as: distance = sqrt(xDis * xDis + yDis * yDis  + zDis 
* zDis). 
 
Also, when advancing atom position from r(t) to r(t+dt), if the positions go beyond 
the boundary, we need to change to the positions of the image that comes in from the 
other side. For example, for x coordinates, we need to keep it between 0 and length of 
simulation box in the x direction: xLen. 
 
0 <= rx < xLen 
 
In the imaging process, we move the x coordinates in units of xLen: 
 
rx_new = rx + xLen * n 
 
where n is an integer. Thus: 
 
0 <= rx + xLen * n < xLen 
 
From which: 
 
(-rx) / xLen <= n < (xLen – rx)/xLen = (-rx)/xLen + 1 
 
which means: 
 
n = ceil(-rx / xLen). 
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Thus: 
rx[i] = rx[i] + xLen * ceil(-rx / xLen) 
 
Similarly for y coordinates and z coordinates arrays. 
 
The neighbor list is kept in variable neighbor, which is of type int**. neighbor[i] will 
contain neighbors for atom i; neighbor[i][0] will be the size of the neighbor list, and 
then neighbor[i][1] -> neighbor[i][neighbor[i][0]] will be the neighbors of atom i. 
During updating of neighbor list, if the number of neighbors exceeds the original 
memory spot allocated, the memory is reallocated with double the original size; old 
neighbors are moved from the old place to the new place, and the memory for old 
neighbor array will be freed. 
 
In the mainly loop of the simulation, we calculate the force experienced by each atom. 
The potential energy used is: E = A/r12 - B/r6, from which we can calculate the force F: 
 

13 7
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r r r

∂
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where A = 158675.062040 (eV/angstrom12); B = 463.262145 (eV/angstrom6). 
 
Divide F by mass of atoms, we get accelerator a. From this, we have several algorithm 
to choose to advance system from t to t + dt. Here, the Velocity Verlet algorithm is 
used: 
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During each time step, we calculate r(t+dt) and v(t+dt) from r(t) and v(t). These 
calculations are calculated repeatedly until the total number of time step is reached. 
 
The final source code is in file serial.c. 
 
4. The parallel code 
 
Now we turn to the parallel code, which is in file parallel.c. 
 
At first, I tried to partition the super cell into parts based on geometry. For example, if 
we have 8 processes, and denote the super cell lengths as xLen, yLen and zLen, the 
eight parts could be: 
 
Part 0: 0 <= x < xLen/2; 0 <= y < yLen/2; 0 <= z < zLen/2. 
Part 1: 0 <= x < xLen/2; 0 <= y < yLen/2; zLen/2 <= z < zLen. 
Part 2: 0 <= x < xLen/2; yLen/2 <= y < yLen; 0 <= z < zLen/2. 
Part 3: 0 <= x < xLen/2; yLen/2 <= y < yLen; zLen/2 <= z < zLen. 
Part 4: xLen/2 <= x < xLen; 0 <= y < yLen/2; 0 <= z < zLen/2. 
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Part 5: xLen/2 <= x < xLen; 0 <= y < yLen/2; zLen/2 <= z < zLen. 
Part 6: xLen/2 <= x < xLen; yLen/2 <= y < yLen; 0 <= z < zLen/2. 
Part 7: xLen/2 <= x < xLen; yLen/2 <= y < yLen; zLen/2 <= z < zLen. 
 
Part i (0 <= i <= 7) will be given to process i for simulation. 
 
However, this method of partition based on geometry is rejected because of the 
difficulty to calculate the neighbor list. Because atoms move around, to keep track of 
where they are is not an easy job. When atoms move from one geometric part 
belonging to one process to a geometric part belonging to another process, we need to 
actually “move” the atom from the memory of the old process it belongs to to the 
memory of the new process. It’s even more difficult to maintain the neighbor list. You 
can not keep every piece of information about the neighbors in a separate array, 
because there will be heavy overlap in the neighbor list, say atom A will be neighbor 
of both atom B and atom C, and keep all the information about the neighbors will 
definitely result in memory space waste. It is much better to just keep a reference or 
index of the neighbor. When you need the positions of the neighbors, you can then 
use this index to get them from an array. Only one array is kept so memory is not 
wasted. However, if we use the geometric partition method, we don’t have a general 
way to find to which process a given neighbor belongs to. We only have an index, but 
the partition of the atoms to processes is based on geometrical location. 
 
Instead of the geometric partition, we will just partition the atoms based on their 
indices. Every process will get roughly nAtoms/numProcs atoms for simulation. Say 
m = nAtoms / numProcs, then process 0 will have atoms from 0 to m - 1; process 1 
will have atoms from m to 2m – 1. Process 0 through process numProcs – 2 will each 
have m atoms; process numProcs – 1 will then have all the remaining atoms. 
 
Every process will keep an array containing all the positions of every atom, but it will 
only change the part that belongs to it. For example, process 0 will still contain the 
positions of all the atoms, but it will only update the positions of atoms 0 to m – 1. 
 
Now neighbor list will be maintained by an index into the whole array. Every process 
can just use its local array for positions of the neighbors. 
 
Atom positions are constantly changing. However, we won’t synchronize the whole 
array of positions every time step. That will be too much a computational and 
communication burden. The whole point of introducing neighbor list is that we don’t 
have to update it in every time step. Instead, we will only synchronize when it is time 
to update neighbor list. 
 
As in serial code, we maintain a neighbor list for each atom until it is time to update. 
However, in serial part, the atom positions of the neighbors are always up to date, 
because they are updated every time step. In parallel code, the positions are not up to 
date. Atoms are “moved” in other processes every time step, but their positions will 
be updated locally only during atom positions synchronization, which happens before 
updating neighbor list. 
 
This isn’t the only place that will result in different simulation results between the 
parallel and the serial codes. Another place is regarding the calculation of the 
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acceleration. Because 1 1( ) ( ) ( ) ( )
2 2

v t dt v t a t dt a t dt dt+ = + + + , we first calculate the 

acceleration at time t based on r(t), we can then advance the system positions from r(t) 

to r(t+dt), and calculate the first part of 1 1( ) ( ) ( ) ( )
2 2

v t dt v t a t dt a t dt dt+ = + + + : 
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v t dt v t a t dt+ = + . Then the acceleration a(t+dt) is calculated, and finally 

1 ( )
2
a t dt dt+ is added to the velocities to finish calculating velocities for time t+dt. In 

the next time step, we don’t need to re-calculate a(t): the values a(t+dt) from the 
previous time step is still valid. 
 
However, in the parallel code, because the atom positions are not synchronized 
between processes every time step, positions of atoms that belong to other processes 
are out-of-date, which means a(t) will also be slightly different from the serial code. 
Even after synchronizing atom positions, the a(t) will still be different because a(t) is 
the a(t+dt) in the last time step, which uses the “old” atom positions. 
 
These are the only two places where there will be difference between the result of the 
parallel code and the result of the serial code. 
 
This will not be a very big problem because we have already chosen the time step 
interval to update the neighbor list such that atoms are not moved very far between 
neighbor list updating. Otherwise, the serial code will not be accurate itself. 
 
In any case, this approximation won’t be any worse than our previous many 
approximations made. For example, the empirical potential model and the potential 
parameters used are best seen as approximations to the real system. 
  
This way, the programming is much easier than the method of partitioning the system 
into geometric regions. Now we can know where atoms are simply by looking at their 
indices. For example, we know atom 0 is located at process 0, so during 
synchronization, we broadcast atom information using process 0 as the root. 
 
Note that the velocity array and acceleration array are not synchronized. This will 
reduce roughly 2/3 of the communication cost. We don’t really need the velocities and 
accelerations of every atom in every process. We only need the positions of neighbors 
to calculate the force experienced by a given atom. 
  
Every process uses different output file so that we can avoid the communication 
overhead to bring the positions of every atoms to a certain node. Process i has its 
output file name as [out_file]_i, where [out_file] is the output file you specified on the 
command line. For example, if you specified output file parallel_out, then the output 
file of process 5 will be parallel_out_5. 
 
Every process only output the positions of atoms that belong to it. After the job exits, 
you can post-process all the output files to combine them into a single one. 
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Process 0 will be responsible to read the input file, generate the initial positions and 
velocities, just as in the serial code. After reading the input parameters, process 0 will 
broadcast these parameters to every other process. 
 
Then, process 0 will generate the initial positions and initial velocities, and send the 
atoms to the process where they belong to according to their indices. 
 
In the parallel code, velocity scale is done some what differently from the serial code, 
because the velocity array is not synchronized across all processes. Every process will 
then calculate its local kinetic energy sum. These partial sums are summed together at 
process 0. Process 0 will then calculate the velocity scale factor, and broadcast the 
factor value back to every other process. All processes then update the part of the 
velocity array that belongs to it. It is easier to understand by looking at the source 
code directly: please see function parallelVelocityScale, and compare with the serial 
counterpart: velocityScale. 
 
Neighbor list is calculated as in serial case, but again the neighbor list is only 
calculated for the atoms that belong to this process. Also, before calculating neighbor 
list, a synchronization of atom positions array is performed. 
 
5. Accuracy of the parallel code 
 
The accuracy of the parallel code is determined by comparing the output from the 
parallel code with that from the serial code. 
 
However, we can not compare the output directly. Remember before the simulation, 
the initial velocities are generated according to the Maxwellian distribution. A random 
number generator is used for this purpose, so even different runs of the same code will 
produce different results due to different generated random numbers.  
 
To get around this difficulty, during the accuracy test of parallel code, I temporarily 
disabled the random velocity generator. The randomness comes from the function 
nextUniformRand, which uses the c function rand() and RAND_MAX to generate a 
random number between 0 and 1. I changed this function to always return 0.2, thus all 
the randomness is removed from the program. This is only used for the purpose of 
comparing the results of parallel and serial codes. The modified codes and the output 
files are contained in the directory accuracy. 
  
First, we run the simulation for only 1 time step. The output from the serial code is 
visualized in following figure: 
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The output from the parallel code is visualized in following figure: 
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This figure is pretty much the same as the figure for serial code, and they are also the 
almost the same to the initial perfect crystal structure. This is expected because after 
only one time step, the system hardly moved at all. 
 
A more numbers-oriented comparison can be performed like this: from the output of 
each code, we have the positions of each atom positions. We can calculate the 
distance between the position of atom i from the serial code and the position of atom i 
from the parallel code. We can calculate the average of this distance. If this average 
distance is small, the result of the parallel code is close to the result of the serial code. 
 
In this case, because we run the system only for 1 step, the position should be exactly 
the same. Remember that the only algorithm difference between the serial and parallel 
code is that in each process of the parallel code, we didn’t update the positions of 
atoms that do not belong to this process. Now we only run for 1 step, so there is no 
update to be done anyway. Let’s see whether the average distance is indeed zero. 
 
Before calculating the distance, we should mention again the periodic boundary 
condition. We should calculate the distance between closest image pair. For example, 
here the length in the x direction of the super cell is 40.782. So an atom at x = 0 and 
an atom at x = 40.782 have distance 0, not 40.782. 
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The average distance is calculated by CalcAveDistance.java, which is an ad hoc java 
code developed to do the job. First, because the output from parallel code is scattered 
as output_1, output_2, ..., we need to combine them into a single output file the same 
format as the output file from the serial code. Then use this combined file and the 
output file from the serial code as the input files to CalcAveDistance.java, the 
calculated average distance is indeed 0.0, as expected. 
 
It isn’t much interesting to run the system for only 1 time step. Next we run the 
system for 100 time step, and the average distance is 0.1134226 angstrom, which is 
acceptable. 
 
So we have shown that the result of the parallel code is acceptable comparing to the 
result of the serial code, but is the result of the serial code accurate? Normally we 
should verify that the simulation is in accordance with physical reality. However, 
because this project is about parallel programming instead of physics or materials 
science, we will assume that the serial code does the right thing. Instead, we will 
focus on the comparison of the serial and parallel code. 
 
6. Performance of the parallel code 
 
Now we turn to the performance of the parallel code. The parallel code has timing 
built-in. At the beginning of the code, we call tStart = MPI_Wtime(); near the end of 
the code, we call tFinish = MPI_Wtime(). tFinish – tStart will then be the time, in 
seconds, the parallel code has run. 
 
There is no timing built into the serial code. It is not difficult to add this functionality 
though. Here I will use the Linux “date” command for timing. A small shell script is 
created, in which the serial code run is sandwiched between two “date” commands. 
The date command will print the date and time on the console. After that, I will 
manually calculate the time used by the serial code by reading the two printed date 
value. 
 
We will investigate the effects of the size of the system, number of processes, and 
neighbor list updating interval. 
 
Size of the system 
 
The system is run to 1000 time step; neighbor list is updated every 10 steps; 4 
processes are used for parallel code. 
System size 10*10*10 15*15*15 20*20*20 
Serial code time (seconds) 243 1868 9256 
Parallel code time (seconds) 96.8537 836.006 4243.07 
Serial_time/parallel_time 2.51 2.23 2.18 
 
Clearly there is benefit to use the parallel code. 2.2 time speed-up using 4 processors 
isn’t too bad. 
 
number of processes 
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The system size is 15*15*15; system is run to 1000 time step; neighbor list is updated 
every 10 steps 
# of processes serial code 2 4 8 
Running time (seconds) 1868 1665.79 836.006 405.113 
 
It is seen that the parallel code scales well. That is, we can benefit more by using 
more processors. 
  
neighbor list updating interval 
 
The system size if 15*15*15; # of processes: 8; system is run to 1000 time step. 
Neighbor list update interval 10 100 never 
Running time (seconds) 405.113 90.2313 54.192 
 
As expected, the parallel code takes more time when we update the neighbor list more 
frequently. Neighbor list updating is the real performance bottleneck in the parallel 
code, because before each neighbor list updating, a synchronization of all atom 
positions is performed, which invokes large data movement. Choosing a good 
neighbor list updating interval is thus very important. We can not choose too high a 
value, for accuracy reason; and we do not want to choose too small a value, for 
performance reason. 
 
7. Conclusion 
 
In this specific scenario, it is worth the effort to develop the parallel code, because the 
speed-up is significant. 
 
Admittedly, in many aspects the code is over-simplified. For example, we have only 
one type of atoms in the system; we don’t have long-range forces such as columbic 
forces; the neighbor list updating interval is specified as an input parameter, whereas 
in reality we may not be able to know the correct value beforehand. However, it is 
none-the-less a good start. 
 


