Parallel Computing for
Molecular Dynamics
Simulation

Yi Zhang




Introduction

» In materials modeling, we often need to follow the
evolution of the materials by calculating the positions of all
the atoms.

» Each atom is under the influence of other atoms. The
forces of other atoms will cause the atom to move.

» [his is a complex multi-body problem and does not have
an analytic solution. As a result, computer s often used to
simulate the evolution of the system.

» This final project will focus on one particular material: Gold.
Both seriall code and parallel code will be produced to
simulate the system. Code will be written in C. In the
parallel case, MPI is used.




The system to simulate

» Gold is chosen as system to simulate due to its
simplicity: there is only one type of atoms in the
System.

» Some experimental properties of gold:

Symbol: Au
Atomic weight: 196.96655

Structure: fcc, with cell size: a = b = c = 4.0782
Angstrom

» Bulk moedulus: 220 GPa
» Melting point: 1337.33 K




The system to simulate

Lennard-Jones potential is used.

=orces exist between every pair of atoms
=orce depends only on the distance

E = A/rt2 - B/r®




The system to simulate

»E = A/rl2 - Bfr®
» A = 158675.062040 (eV*angstrom12)
» B = 463.262145 (eV*angstrom6)

» Put these potential parameters into GULP,
we can calculate that:

The lattice constant: 4.078200 (Angstrom)
Bulk modulus: 219.99974 (GPa)
Close to experimental value




The system to simulate




late

iImu

The system to s

XXX XX XXX DD
DXDXPDXDXDXPXDXPX DX XX DXDXDXDXDXDXDXDX
DXL XD

PXPIXIPXIXIXIXIXIXIXIXPXIXIXIXX XXX

XXX XYL
XXX LRI IIXX]
ﬁﬁﬁﬁﬁﬁﬁx XXX
vﬁﬁﬁﬁ AFEAEE
XIXIXIXD IXIXIXIXIX
XDXIDXIX DIXIXIX
XXX IXIXIXIXIX
XIXIXIXIX XXX
XIXIXIXIXIXIX EKEKKEW
XPDXPXIXIXIXIX] XX

DX XD XX DD DX XX
XXX X XXX XXX DYIXIX X
DX IXIXIIYIXIX

4

4
20205
XX
XX
20
20
XX
XX
2O

X
E

ﬁﬂﬁﬁﬁﬁﬁﬁ
XX
X
X
X
X
X
X
X

<AE
X
X
X
XX
XX
XX
X
X

L

EWEV
4WF

ey
RO

b

W

i

DAY
EEEWE
h

X

4
A
PPN X

XXX XA

A IXIXIXIXIXIXIXIX]

XD
XD
<IXIX
X
I
<IXIX
<IXIX
<IXD

4
4




The system to simulate

e e e
SRS
e
A AN
)
e




The system to simulate




The system to simulate

» Choose force cutoff to 6 angstroms.
» Included 3™ nearest neighbor.
(4.078/sqgrt(2), 4.078, 4.078*sqrt(2)=5.767)

» Use the formula E = A/rl2 - B/r6, E = 0.01
eV at r = 6 angstroms, which is' indeed
negligible)




vyvvyy

VVYyVVYVYyYVYYVYYVYYVYYVYY

The serial code

1st line: super cell size, 3 integers.
2nd line:

1st: time interval per step, ini units of ps (pico seconds, 10-12 seconds),
double type.

2nd: equilibration time step, integer type.
3rd: velocity scaling interval, integer type.
4th: total time step, integer type.
3rd line:
1st: temperature, in unit of Kelvin, double type.
2nd: force cutoff value, in unit of angstrom, double type.
4th line:
1st: start time step of dumping atom positions to output file, integer type.
2nd: time step interval off dumping atom positions to output file, integer type.
5thi line:
time step interval of updating neighbor list.




The serial code

» Super cell size

» Time interval per step

» Equilibration time step: scaling velocities
» V/elocity scaling| interval

» [otal time step

» Output atom positions

» Neighbor list updating interval




The serial code

Output file:
Echoing input
Output atom positions at specified time steps.




Generate, initial positions

Unit cell
(0, 0, 0)
(0.5 *a, 0.5 * a, 0)
(0.5 *a, 0, 0.5* a)
(0, 0.5 *a, 0.5 * a)
Super cell




Generate the initial velocities

» According te Maxwellian distribution

» [0 generate Gaussian random numbers

The polar method of G. E. P. Box, M. E. Muller,
and G. Marsaglia, as described by Donald E.
Knuth in The Art off Computer Programming,
Volume 2: Seminumerical Algorithms, section
3.4.1, subsection C, algorithm P.

» Scale velocities




oy 0O P~ W wm = mMm 4 —

S
@)
)
(O
S
(D)
c
)
@)
S
()]
O
=
-
C
=
@
O
c
(O
S
c
©
0p)
0p)
-
O
O

» 4000 numbers




Velocity Scaling

» From the equi-partition law: Kinetic energy: 3/2 KT,
where k Is the Boltzmann constant.

» N atoms, we have total kinetic energy:
targetE = 3/2 KT = N

» The real kinetic energy realE of the system: sum
over all atoms.

» The scaling| factor will be sgrt(targetE / realE)

» Each velocity is then multiplied by this scaling
factor.




Periodic boundary: condition

» [0 calculate the distance between atom A and
atom B, we consider the distances between all of
A’s images (including A) and all off B’s images
(including B), and the shortest distance of all
these distances will' be the distance we will use.

» This is based on the assumption that the effect of
the second and higher order nearest images pairs
can be neglected comparing the nearest pair of
Images.




Periodic boundary: condition

xDis = x{j] — x][i]
xDis — Len * floor(xDis / Len + 0.5)
Similarly for yDis and! zDis

distance = sgrt(xDis * xDis + yDis * yDis +
zDis * zDis)




Periodic boundary: condition

» i the positions go beyond the boundary, we need
to change to the positions of the image that
comes in from the other side

» IX_nhew = rx + xl.en * n
» 0 <=rx + xlLen * n < xlLen

» (-rx) / xLen <= n < (XLen — rx)/xLen = (-rx)/xLen
+ 1

» N = ceil(-rx / xLen).
» Thus:
» rx[1] = mx[i] + xLen = cell(-rx / xLen)




Velocity Verlet




The parallel code

Geometry partition.

For example, 8 processes:
Part 0: 0 <= x < xLen/2; 0 <=y < ylLen/2; 0 <= z < zlLen/2.
Part 1: 0 <= x < xLen/2; 0 <=y < yLen/2; zLen/2 <= z < zlLen.
Part 2: 0 <= x < xlLen/2; yLen/2 <=y < ylLen; 0 <= z < zlL.en/2.
Part 3: 0 <= x < xLen/2; yLen/2 <=y < ylLen; zLen/2 <= z < zlLen.
Part 4: xL.en/2 <= x < xLen; 0 <=y < ylLen/2; 0 <= z < zlLen/2.
Part 5: xLen/2 <= x < xLen; 0 <=y < yLen/2; zLen/2 <= z < zlen.
Part 6: xLen/2 <= x < xLen; yLen/2 <=y <ylen; 0 <=1z <
zllen/2.
Part 7: xLen/2 <= x < xLen; yLen/2 <=y < ylLen; zlLen/2 <=z <
zlLen.




Geometric partition

Hard to keep track off atoms
Hard to synchronize between processes
Hard to update neighbor list




Partition based on Index

Positions are synchronized before updating
neighbor list

Velocities and accelerations are not
synchronized




Parallel Code

» Old positions of neighbors are used

» Acceleration calculated based on old
positions of atoms belong to other process
IS used

» Neighbor list updating interval

» Approximation won't be any worse than our
previous many approximations made




Parallel Code

» Every process outputs its own output file:
[outfile]_I for process I.

» Every process only output the positions of
atoms that belong to It.

» Process 0 will be responsible to read the
Input file, generate the initial positions and
velocities, and broadcast initial values.




Parallel Velocity Scale

Partial Kinetic Energy Sum
“‘Reduce” to total energy.
Calculate scaling| factor:
Broadcast the factor

Do the scaling locally




Accuracy of parallel code

» [he accuracy of the parallel code is
determined by comparing the output from
the parallel code with that from the serial

code.

» Normal
should
physica

v the accuracy of the serial code
ne tested by comparing results to

reality.




After time step 1

XXX X
X]
M

XXX

X

XXX
XXX
R0

il
RO

X
X

<

X

)
XXX

™
™

s
il
o
Ll

%
b
b
b
b
b
v
b
b

i

)

i

R
Ll
R
i

XXX

XX

!
Ny

P TN )
IXKDXIXTX
XIXPDLDXDAIX
XXX XXX X XDDAPPKDX
XD DXDXDK] RO

XXX XX XX DXIDXDXDXDX DX XXX DX XX
XD DI DX DX
XXX
XXX DX AR IXIXIX XK
XXX XXX
XXX
XXX
XXX
DXDXXIXIX

XDXIXIXIX]

<]

Ry
Pl

X DAXIDIXIXDYIX]
!

XIXIXIXIXIX]

X
XXX
{

il
XXX

XXX

o
i

X

XXX
o

)

XXX
XXX

X

™
XIXIDXIIAXIXY

P

%
X
)

)

L il
XXX
il

XIXIXD

Ll
Ll
Ll
i}

L

Pl
Pl
e
e
A

XXX

AKX
il

XDXIXIXIX

£
XXX

XX




Comparing with serial code

Disable random; number generator.
After 1 time step: average distance 0.0
After 100 time step: 0.1134226




Performance: system size

The system 15 run to 1000 time step; neighbor list 15 updated every 10 steps; 4
yrocesses are used for parallel code,

System size 20*20%20

Sertal code time (seconds)
Parallel code time (seconds) | 96,8537 836.006
Sertal time/parallel time 231




Performance: # of processes

e system size 15 [31¥1: system 15 run o 100 tme sep; netehbor st 15 updated
every 10 teps
F 0l processes seralcode | 4 ;

Running (e (séconds) | 18 30, 11




Performance; neighbor list updating
Interval

The system size 1f 1S¥15%15: # of processes: §: system 15 run o 1000 time step.

Neighbor l1st update mterval -- ever

Running time (seconds) 002313




Conclusion

In this specific scenario, It is worth the
effort to develop the parallel code, because
the speed-up is significant.

Over-simplified
None-the-less a good start




THE END




