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Quantum Mechanics in 30 Seconds

State of quantum system completely specified by a unit
vector in complex vector (Hilbert) Space

Observable properties of the system are described by the
action of Hermitian operators on the Hilbert space

Time evolution of quantum states is unitary (must preserve
the norm)
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Quantum Mechanics in 30 (More) Seconds

The Hamiltonian or “energy” operator of the system is the
generator of time evolution

All dynamics are governed by the Schrodinger equation

i L)) = H|p(t))

The Hamiltonian can be time-independent (easy) or time-
dependent (hard)
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How to Simulate Quantum Evolution

Check this out: Let
Y1) = U(t, to)l¥(to))
This “time evolution operator” satisfies the Schrodinger equation
zdtU(t to) = H(t) U(t, tp)
The following property is also satisfied:

U(t, to) =U(t, t1) U(t1, to)
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How to Simulate Quantum Evolution

Now PSiaCoPATH has a natural way to hack up the problem
U(t, to) =U(t,t —e)---Ulto + ¢, to)

Expand each time step’s evolution operator in Taylor Series

3 _ dU 2 d°0
U(t+€, t)—l—l—E%‘t %d?t_l_

Derivative terms related to Hamiltonian via Schrodinger Equation

For sufficiently small € it will be a good approximation to truncate
the series after relatively few terms
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PSiaCoPATH: A look inside the mind of a serial killer

First order sucks, second order works ok, third order was too
annoying to bother coding up for now

Time evolution operator of each step calculated independently

Total time evolution operator found by parallel prefix (order matters!)

Alternative approach to parallelization: evolve a single pure state
through a series of row-distributed matrix-vector multiplications
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PSiaCoPATH: Multiple Personality Disorder

A Pair of Paths to (almost) Perfect Parallelization

Row-Distributed S.S. Parallel Prefix Full U
Outout Time evolution of a single Full time evolution
P (pure) initial state operator of the system
Scaling N2 2T N3
(time) T - <T + C(N, p)) P
Scaling 2 >
(space) N<+T-N T.N
Appropriate when interested in Appr(_)prlate f(_)r general
Uses o : evolution of mixed states
specific evolution of some state N
or many initial states

N = dimension, T = length of simulation, p = number of processors, C = communication cost
C(N,p) <O[N-(p—1)]
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PSiaCoPATH: Performance (Prefix Mode)

Run Time Scaling with Number of Processors
for Quantum Adiabatic Solution of Six Qubit Exact Cover
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PSiaCoPATH: Getting to Know the Victim

Problem: How to deal with arbitrary time-dependent Hamiltonians

Solution: Parameterize
H(t) = X ap(t) Hy,

Here, { .} is a set of time-independent Hermitian matrices

For an N-dimensional Hilbert space, N2 - 1 terms are sufficient to
construct any time-dependent Hamiltonian
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PSiaCoPATH: Premeditating the Attack

. . . . . 2
Terms in time evolution operator involve | A (t)|”, etc

With parameterized form, pre-compute products

—~~

Then calculation of U(t + ¢, t) involves only matrix addition
with time-dependent coefficients ax(t), ag(t),...

|9(t))

MIT 6.338J Final Presentation
Page 11

0 (¢ to)
E. Fellheimer, and M. Rudner ‘Tft



PSiaCoPATH: Sanity Check |

Spin-1/2 Moment in Static Magnetic Field
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PSiaCoPATH: Sanity Check I

Spin-1/2 Moment in Slowly Rotating Field
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PSiaCoPATH: Sanity Check I

Spin-1/2 Moment in Slowly Rotating Field

Q
tan o = =—=£
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PSiaCoPATH: Sanity Check Il

Spin-1/2 Moment in Slowly Rotating Field

Lesson 1: Time step should be small compared to shortest natural
timescale (v)™!

Lesson 2: Time ordering is important (already known, but fixed the bug)

Lesson 3: Physics is fun!
Cycloid behavior unexpected, but fully understood in retrospect

Problem maps to that of a point on rim of a cone rolling on flat surface

|9(t))

MIT 6.338J Final Presentation " A
E. Fellheimer, and M. Rudner Page 15 ‘Tf1 U(ts tO)



Adiabatic Quantum Computation in 20 Seconds

Adiabatic Theorem: If Hamiltonian varies slowly enough, system
initially in instantaneous ground state of A (¢) will remain close
to instantaneous ground state of A (¢) for all time

Idea (Farhi et al.): Encode solution to NP-complete problem as
ground state of some Hamiltonian

Start in ground state of a different Hamiltonian with easy to
prepare ground state

Adiabatically morph to “problem Hamiltonian” and read out answer

For the whole story see arXiv:quant-ph/0104129
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PSiaCoPATH Attacks Satisfiability

Exact Cover is an NP-Complete version of the satisfiability problem

N bits, m 3-bit constraint clauses of the form

PSiaCoPATH has simulated the quantum adiabatic solution to randomly
generated instances of Exact Cover for 4, 6, and 8 qubits
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PSiaCoPATH Attacks Satisfiability

Instantaneous Eigenstate Energies During Quantum Adiabatic Solution of
Six Qubit Exact Cover with T = 50
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State Population

PSiaCoPATH Attacks Satisfiability

Imstamtanscus Eigenstate Populations During Quantum Adlabatic Solution of
Six Qubit Exact Coverwith T =50

Instantanecus Eigenstate Populations During Quantum Adiabatic Solution of
Six Cubst Exact Cover wath T = 200
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PSiaCoPATH Attacks Satisfiability

Sguare Norm of |y During Quantum Adiabatic Solution of
Six Qubit Exact Cover with T =50, At=0.01
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PSicCoPATH is to the Limit

Eight Qubit Exact Cover, T = 250, At = 0.02
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Conclusions

Proof of concept — showed that we could create efficient
parallel algorithms for evolution of large quantum systems

Better memory management, i.e. storing only as many
operators as desired for output, would allow larger
systems/longer runs on parallel prefix code

However, parallelization allows simulation of larger
guantum systems in less time than serial code
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