
Parallel Simulation of Quantum Computation by Practically

Adiabatic Time-dependent Hamiltonians (PSiQCoPATH)

Eric Fellheimer and Mark Rudner

March 27, 2005

1. Program Purpose — PSiQCoPATH is designed to compute the “exact” time evolution of a wide
range of quantum systems with time-dependent Hamiltonians in a discrete time simulation to accuracy
O [(∆t)n]

A. Modes of Operation

i) Single pure state evolution: |ψ0 〉 −→ |ψf 〉 = T
[
e
−i/h̄

∫ tf

t0
Ĥ(t) dt

]
|ψ0 〉

ii) Mixed state evolution: ρ̂0 −→ ρ̂f = Û(tf ; t0) ρ̂0 Û
†(tf ; t0)

iii) General time evolution operator calculation: Û(tf ; t0) = T
[
e
−i/h̄

∫ tf

t0
Ĥ(t) dt

]
B. Results

i) For pure state evolution, the result is a sequence of N × 1 column vectors containing the
coefficients of |ψ(t) 〉 in the basis used in the input. Here, N is the dimensionality of the
Hilbert space, which for a quantum computing system is typically 2n. Runs of this type can
use Eric’s row-distributed matrix-vector algorithm.

ii) For mixed state evolution or simply a time-evolution operator calculation, a sequence of
matrices corresponding to the time evolution operators Û(t; t0) in the same basis as the
input will be saved. Additionally, the final mixed state density matrix will be saved if an
initial density matrix is supplied. Runs of these types use the matrix-matrix parallel prefix
algorithm.

iii) In all cases, output should be saved in a format that can be read back in as the starting point
for a further calculation

C. Applications

i) Quantum Gate Array (QGA) Simulation: This corresponds to a run with a piecewise constant
Hamiltonian. For such cases, a special mode should be available where the user can directly
supply the sequence of unitary operators corresponding to the desired gates. For an individual
pure state QGA simulation, the matrices should be read in directly in a row-distributed
manner in preparation for use in Eric’s algorithm.

ii) Quantum Adiabatic Evolution (QAE): An initial and final Hamiltonian are specified with
smooth interpolation in between. More details on this discussed in the input section below.

iii) General Time-dependent Quantum Evolution: PSiQCoPATH can be used to study the dy-
namics of any quantum system with a finite-dimensional Hilbert space (e.g. spin chains, spin

i

lattices, etc). Of particular interest may be the behavior in the vicinity of quantum critical
points.

2. Program Details

A. Supported Types of Evolution

i) Ideally, any arbitray time-dependent Hamiltonian would be supported. However, in practice
this is very difficult to implement

ii) QGA simulations are the easiest, and are a straightforward application of the parallel prefix
algorithm or Eric’s algorithm as the case may be. All that is required is a way for the user
to supply the desired gates in the form of a sequence of large unitary matrices

iii) Quite often, it is convenient to study QAE on systems where the Hamiltonian linearly scales
from an initial Hamiltonian ĤA to a final Hamiltonian ĤP such that

Ĥ(t) =
(
t

T

)
ĤA +

(
1− t

T

)
ĤP .

If we feel this is a sufficiently common type of system, we may want to code such linear
interpolation directly in as an option in the program.

iv) More generally, we may think of time-dependent evolution as arising in some system from
some external agent adjusting “knobs” on an apparatus, which in turn changes some fields
or other parameters of the system. In this model, the time dependent Hamiltonian of the
system can be written as

Ĥ(t) = α1(t) Ĥ1 + α2(t) Ĥ2 + α3(t) Ĥ3 + · · ·

where {Ĥi} are constant operators.

Allowing up to 3 adjustable parameters αi(t), i ∈ {1, 2, 3} would probably be sufficient to
take care of the needs of most things one would want to use this for. An example of when you
might want more than 2 parameters would be if a quantum critical point exists in a system
of interest for adiabatic quantum computation; by tuning extra parameters, one may be able
to avoid this point where the energy gap to the first excited state vanishes.

B. The evolution operator for a single time step

i) The fundamental physics in PSiQCoPATH is contained in the calculation of the evolution
operator for each discrete time step. For QGA simulations, this step is not performed by
the program as the individual unitary steps are supplied directly. In all other circumstances,
evolution is governed by the Schrödinger equation

i
d

dt
|ψ(t) 〉 = Ĥ(t)|ψ(t) 〉

in units units where h̄ ≡ 1. By writing

|ψ(t) 〉 = Û(t; t0)|ψ(t0) 〉

we find that the time evolution operator Û(t; t0) also obeys the Schrödinger equation

i
d

dt
Û(t; t0) = Ĥ(t) Û(t; t0).

Note that the derivative operates only on the first argument; the argument after the semicolon
acts as a constant parameter.

ii

For a finite time step ∆t starting at time tk, we wish to find

|ψ(tk + ∆t) 〉 = Û(tk + ∆t; tk)|ψ(tk) 〉.

For a Hamiltonian with general nontrivial time dependence, we cannot find a closed form
analytic solution to the Schrödinger equation. From the fact that as ∆t → 0 no evolution
should occur, however, we do have that Û(tk + ∆t; tk) → 1 as ∆t→ 0.

If Ĥ(t) is infinitely differentiable in time, then Û(t) will also have analytic time dependence.
For less well-behaved Ĥ continuously differentiable only m − 1 times, Û(t) ∈ Cm. Thus the
expansion is only valid up to mth order in such cases. If we restrict ourselves to smooth
time dependence of Ĥ, then there is no problem. For situations in which one would like
to simulate evolution under discontinuous changes of Ĥ, PSiQCoPATH can be run multiple
times in succession on the different pieces, and the results combined at the end without any
loss of information or generatlity.
Assuming Ĥ ∈ C∞ and using the fact that Û(tk + ∆t; tk) → 1 as ∆t → 0, we can write
Û(tk + ∆t; tk) as the Taylor series

Û(tk + ∆t; tk) = 1+
dÛ

dt

∣∣∣∣∣
tk

∆t+
1
2!

d2Û

dt2

∣∣∣∣∣
tk

(∆t)2 +
1
3!

d3Û

dt3

∣∣∣∣∣
tk

(∆t)3 + · · · .

The only approximation made by PSiQCoPATH is the termination of this series to finitely
many terms. In principle we can go to arbitrary order, but I feel like 3rd order should be high
enough (and it will only get messier and messier to continue). For this reason, I compute
here explicitly the terms of this series up to order O(∆t3).

O(1) : 1

O(∆t) : −iĤ(tk)

This comes from a straight application of the Schrödinger equation dÛ
dt = −iĤÛ :

dÛ

dt

∣∣∣∣∣
tk

= −iĤ(tk)Û(tk; tk) = −iĤ(tk)

For our general form for a tunable Hamiltonian Ĥ(t) = α1(t)Ĥ1 + · · · this gives

dÛ

dt

∣∣∣∣∣
tk

= −i
[
α1(tk)Ĥ1 + α2(tk)Ĥ2 + α3(tk)Ĥ3

]
.

In the simpler case of linear interpolation, α1(t) = t
T , α2(t) =

(
1− t

T

)
, and α3 = 0. Then

the first order derivative term is

dÛ

dt

∣∣∣∣∣
tk

= −i
[(

tk
T

)
Ĥ1 +

(
1− tk

T

)
Ĥ2

]
.

O(∆t2) : − 1
2Ĥ

2(tk)− i
2

dĤ
dt

∣∣∣
tk

Again this result is obtained by applying the Schrödinger equation twice:

d2Û

dt2
=

d

dt

[
−iĤ(t)Û(t; tk)

]
.

iii

Because both Ĥ(t) and Û(t; tk) depend on t, the product rule produces two terms on the
RHS

d2Û

dt2
= −idĤ

dt
Û − iĤ

dÛ

dt
.

In the second term we recognize dÛ
dt as −iĤÛ . Evaluating the terms at t = tk (i.e.

∆t = 0) and putting in Û(tk; tk) = 1 gives

d2Û

dt2

∣∣∣∣∣
tk

= −i dĤ
dt

∣∣∣∣∣
tk

− Ĥ2(tk).

For the general 3-parameter form, this gives

d2Û

dt2

∣∣∣∣∣
tk

= −i
[
α̇1(tk)Ĥ1 + α̇2(tk)Ĥ2 + α̇3(tk)Ĥ3

]
−

[
α1(tk)Ĥ1 + α2(tk)Ĥ2 + α3(tk)Ĥ3

]2

,

and for the case of linear interpolation we get

d2Û

dt2

∣∣∣∣∣
tk

= − i

T

(
Ĥ1 − Ĥ2

)
−

(
tk
T

)2

Ĥ 2
1 − tk

T

(
1− tk

T

) (
Ĥ1Ĥ2 + Ĥ2Ĥ1

)
−

(
1− tk

T

)2

Ĥ 2
2

O(∆t3) : − 1
3!

(
2 dĤ

dt

∣∣∣
tk

Ĥ(tk) + Ĥ(tk) dĤ
dt

∣∣∣
tk

− iĤ3(tk) + i d2Ĥ
dt2

∣∣∣
tk

)
This was obtained by expanding

d3Û

dt3
= − d

dt

[
Ĥ(t) Ĥ(t) Û(t; tk)

]
− i

d

dt

[
dĤ

dt
Û(t; tk)

]

using the chain rule to get

− d

dt

[
Ĥ(t) Ĥ(t) Û(t; tk)

]
= −dĤ

dt
Ĥ(t) Û(t; tk)− Ĥ(t)

dĤ

dt
Û(t; tk) + iĤ3(t) Û(t; tk)

and

−i d
dt

[
dĤ

dt
Û(t; tk)

]
= −id

2Ĥ

dt2
Û(t; tk)− dĤ

dt
Ĥ(t) Û(t; tk).

For the 3-parameter type Hamiltonians, we just need to insert

Ĥ(tk) =
∑

i

αi(tk)Ĥi,

dĤ

dt

∣∣∣∣∣
tk

=
∑

i

α̇i(tk)Ĥi,

and
d2Ĥ

dt2

∣∣∣∣∣
tk

=
∑

i

α̈i(tk)Ĥi.

For the linear interpolation case, the d2Ĥ
dt2

∣∣∣
tk

term drops out, and we only need to insert

Ĥ(tk) =
(
tk
T

)
Ĥ1 +

(
1− tk

T

)
Ĥ2

iv

and
dĤ

dt

∣∣∣∣∣
tk

=
1
T

(
Ĥ1 − Ĥ2

)
.

The third order expression is a little messy, but not too bad I guess... We should decide
whether or not we want to code it up, and if there’s any reason to carry the expansion to
one more order. It seems pretty costly to keep calculating higher and higher order terms,
and at some point it would probably be better to just decrease the time step than to go higher.

ii) Once the evolution operators are calculated for each indidual time step, the discretized evo-
lution operator of the system is given by the series

1, Û(∆t; 0), Û(2∆t; ∆t)Û(∆t; 0), Û(3∆t; 2∆t)Û(2∆t; ∆t)Û(∆t; 0), . . .

which can be calculated efficiently in parallel using the standard parallel prefix (scan) algo-
rithm.

iii) Unitarity: By terminating the series for Û(tk + ∆t; tk) after finitely many terms, the result
will be a non-unitary evolution operator. However, if the simulation parameters (∆t, order
to which Û is calculated) are good enough, then this non-unitarity will be small. Put another
way, the closeness of the final result to unitarity gives us a way to track the convergence of
the simulation, and to determine if we need to decrease the time step/go to higher order.
Two quantitative ways to check this are through ‖Û†Û −1‖ and by looking at the sum of the
squares of each individual row or column (these are the diagonal elements of Û†Û).

iv) Code-wise my idea is that each Û should be calculated on a single processor (the same one
on which it will need to be for the parallel prefix operation). This is the most logical for
the matrix-matrix type of run, but I’m not sure what the best way is for the matrix-vector
method. Somehow all of these Û ’s need to be calculated and then distributed row-wise. My
guess is that it’s still best to generate them in the same way (each processor generating T/p∆t
of them) and then to redistribute the data, but I’ve only just though about it in the last 30
seconds.

v) I’m a little worried about the matrix-vector algorithm right now. I’m not sure what the
slowest step will be here. Calculating the Û ’s still involves matrix multiplications, which are
O(N3) operations. Thus even though the matrix-vector approach speeds up the prefixing
operation, the benefit may not be as large as we had hoped. On the other hand, it will still
have speedup over the fully matrix-matrix approach for the cases where it applies, so for that
reason it’s probably good to proceed with it.

vi) If we hard-code in linear interpolation, it’s easy to just code up what was derived above. For
the general 3-parameter Hamiltonians my thought is that the user can specify Ĥ1, Ĥ2, Ĥ3,
and an N × (1 + 3m) matrix of values, the kth row of which contains

tk, α1(tk), α2(tk), α3(tk),
dα1

dt

∣∣∣∣
tk

,
dα2

dt

∣∣∣∣
tk

,
dα3

dt

∣∣∣∣
tk

, · · · , d
m−1α1

dtm−1

∣∣∣∣
tk

,
dm−1α2

dtm−1

∣∣∣∣
tk

,
dm−1α3

dtm−1

∣∣∣∣
tk

where N is the number of time steps to be used, tk is the total time elapsed up to the kth

time step, m is the order to which the exponential is to be calculated at each time step, and
the derivates dαi

dt up to dm−1αi

dtm−1 are included in the row.

Note that this method allows for arbitrarily varying time steps throughout the run, and any
smooth functional dependence one can dream up for the three parameters. It should be simple

v

to get Matlab to output an array of values in this format for whatever we feel like throwing
at it.

C. Implementation Issues

i) Matrix Storage and Operations: We still need to do some more research here. My friend at
Los Alamos said that if we’re going to use BLAS we should check out the ATLAS implemen-
tation which is some sort of self-optimizing thing. I finally read about Strassen’s algorithm
yesterday. The issue there seems to be memory, since it might really rack up the usage with
all the recursive calls. When working with 2n × 2n matrices, this could become a problem as
we try to scale up n.

On the other hand, we can’t reap the benefit of BLAS-3 for matrices larger than what will
fit in the fast cache memory of whatever machine we’re running on. The optimal thing to
do may be to block the matrices using Strassen down to the size where they can fit in fast
memory, then terminate the recursion by doing a BLAS-3 style matrix multiplication instead
of going all the way down to 1× 1. You probably have a lot better idea about these types of
things than me, so I’ll be interested to see your take on this.

ii) Input Format

vi

