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1. Intro: Quantum vs Classical Computation

1.1 Classical Information

a) The fundamental unit of classical information is the bit b ∈ Z2

b) We can store larger amounts of information by bringing N bits together to form an N -bit
register

c) The state space of such a register is an N -dimensional vector space over the field Z2, called
Z

N
2

d) Data is stored as a particular state of the register, called an N -bit word or “bit string”
i) e.g. x = 1010001101110010 ∈ Z 16

2

ii) An N -bit register can be set to represent any one of the 2N possible states of Z N
2

1.2 Quantum Information

a) The state of a quantum system is a vector |ψ 〉 in a vector space H over the field C
b) Fundamental unit of quantum information is the qubit |ψ 〉 ∈ H2

i) H2 is a two (complex) dimensional vector space spanned by the basis states | 0 〉 and | 1 〉
ii) e.g. A two-level system such as that of spin-1/2 particle
iii) Basis vectors are | 0 〉 and | 1 〉, but qubit |ψ 〉 can be any vector α| 0 〉+ β| 1 〉; α, β ∈ C

c) Larger amounts of quantum information stored by bringingN such systems {H(1)
2 ,H(2)

2 , . . .H(N)
2 }

together

d) The total 2N dimensional state space H N
2 = H(1)

2 ⊗H(2)
2 ⊗ · · · ⊗ H(N)

2

i) Basis States: | 1 〉 ⊗ | 0 〉 ⊗ | 1 〉 ⊗ · · · ⊗ | 0 〉 ≡ | 101 · · · 0 〉
ii) Thus any classical bit string x can be mapped to a basis state |x 〉 ∈ H N

2

1.3 Classical Computation

a) Perform an operation f : Z N
2 → Z N

2 such that f(x) = y

1.4 Quantum Computation

a) Operations on quantum systems are accomplished by the action of linear operators on H
b) Analogous operation f̂ : H N

2 → H N
2 such that f̂ |x 〉 = | y 〉

c) Canonical basis states are mapped according to action of f on their classical counterparts
d) Let |ψ 〉 =

∑
x∈H αx|x 〉, then

f̂ |ψ 〉 =
∑
x∈H

αxf̂ |x 〉 =
∑
x∈H

αx| y 〉

i) Natural perfect SIMD parallelization
ii) Unfortunately, can only read out one of the answers
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iii) Reaping the benefits of quantum power requires more cleverness

2. Adiabatic Model of Quantum Computation

2.1 Models of quantum computation

a) Several equivalent models of quantum computation have been proposed
b) Most natural for computer scientists is the Quantum Gate Array (QGA) model
c) Simulating a QGA is not particularly interesting in terms of gaining any new understanding

of quantum physics

2.2 Quantum Computing by Adiabatic Evolution

a) Special operator Ĥ is the “energy” operator of quantum system
b) Eigenvectors/eigenvalues are the “energy levels” of the system
c) Suppose we can design a system whose Hamiltonian Ĥp encodes an instance of a particular

problem
i) e.g. traveling salesman — energy ↔ “distance” of a path, eigenvectors ↔ paths

d) Lowest energy level (ground state) is the solution to the problem
e) In general, we don’t know how to prepare this state, but we do know how to prepare the

system in the ground state of a simpler Hamiltonian Ĥ0

f) Adiabatic Theorem: Consider a system initially in the ground state |ψ0 〉0 of Ĥ0. If by
changing some external parameters, the system’s Hamiltonian Ĥ(t) is slowly and smoothly
transformed from Ĥ0 to Ĥp, then the final state of the system will be the ground state |ψ0 〉p,
the ground state of Ĥp.

i) e.g. Ĥ(t) = (1− t)Ĥ0 + tĤp, t ∈ [0, 1]
g) Idea: start the system in the ground state of a simple Hamiltonian, then slowly change some

parameter to evolve the Hamiltonian into the particular problem Hamiltonian and read out
the answer

h) Problem: How slow is “slow enough?”

3. Simulating Adiabatic Quantum Evolution

3.1 Interesting both for quantum computation and general study of quantum dynamics

3.2 Quantum evolution given by Shrodinger equation (SE)

ih̄
d

dt
|ψ 〉 = Ĥ(t)|ψ 〉

3.3 Naive serial simulation: |ψ(t+ ε) 〉 =
[
1− i ε

h̄Ĥ(t)
]
|ψ(t) 〉

3.4 We can do better with parallel!

4. Parallel Calculation of the Time Evolution Operator

4.1 For any Hamiltonian evolution of a quantum system, can define the Time Evolution Operator
Û(t, t0) such that |ψ(t) 〉 = Û(t, t0)|ψ(t0) 〉

4.2 For time independent Ĥ, SE is solved by Û(t, t0) = e−i(t−t0)Ĥ/h̄

4.3 For t0 < t1 < t, Û(t, t0) = Û(t, t1)Û(t1, t0)

4.4 If Ĥ(t) varies slowly in time, break the interval up into pieces over which Ĥ is roughly constant.

4.5 Discretized version of complete information about state of the system given by

[1, U(t0 + ε, t0), U(t0 + 2ε, t0 + ε)U(t0 + ε, t0), . . .]

5. Advantages of Parallel Algorithm
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5.1 By re-ordering the calculation (not going on sequence), we can recast it into a variation on parallel
prefix

5.2 By focusing on the time evolution operator itself rather than evolving a particular state, we

a) get complete information about dynamical behavior for all possible initial states
b) can take advantage of BLAS-3 matrix-matrix operations
c) would need 2N runs of serial BLAS-2 code to get same dynamical information

5.3 Hope to simulate up to 9 or 10 qubits

5.4 Can learn about “how slow” is slow enough for quantum adiabatic computation

5.5 Try to integrate recently developed efficient algorithms for systems with low-entanglement
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