
6.338 – Parallel Computing Brian Anderson
Final Project Report May 16, 2005

Parallel Monte Carlo Raytracing

I. Introduction
Raytracing is a method for rendering 3D shapes onto a 2D image.  In it's simplest 

form, a single ray is shot per pixel and colored using the closest object the ray intersects. 
This basic concept of raytracing is straightforward, but can be extended almost limitlessly 
to approximate reality more closely.  In this project I aim to augment a simple raytracer to 
have fuzzy reflections, soft shadows, and depth of field effects by using Monte Carlo 
methods.  Implementing these effects require the averaging of many randomly generated 
rays, which lends itself well to parallelization.  Although distributing rays across 
processors for load balancing may seem straightforward, it will be seen that we must take 
care not to reduce the variance of the Monte Carlo methods in our selection of rays 
compared to the serial version.

II. Simple Raytracing
For this project I extended a simple raytracer that I made while I took 6.374 – 

Introduction to Computer Graphics.  The simple raytracer has four basic aspects to it:  ray 
selection, object intersection, shading/lighting, and reflections/refractions.

Ray selection is related to the type of camera being used to view the scene.  The 
simple raytracer implements an orthographic camera and a perspective camera.  The 
orthographic camera emits one ray per pixel, where each ray has a different offset origin 
and the same direction as the camera.  This results in objects appearing to be the same size 
independent of the objects distance from the camera.  The perspective camera emits rays 
that all originate from a single point, but with directions that are distributed evenly across 
a field of view angle.  This results in objects appearing to grow smaller as they move away 
from the camera, similar to the way we view the world.

Figure 1: Orthographic Rays            Figure 2: Perspective Rays
(Images taken from 6.837 notes by Durand & Cutler)

Object intersection takes one of these rays and an object and determines at what 
points along the ray it intersects the object.  The simple raytracer implements intersections 
of planes, triangles, spheres, cylinders, groups of objects, transformation of objects, and 
boolean combinations of objects.  A ray is intersected with every object in the scene and 
the closest intersection to the ray's origin is used as the contribution to that ray's color.

The color contribution is calculated by first shading the intersection point.  A ray is 
shot from the intersection point to every light.  If there is an intersection between the point 
and the light, it is considered to be in the shadow and no illumination is added.  However, 



if there is no intersection, the diffuse and specular components of the illumination are 
calculated separately and combined.  The diffuse component is essentially the flux of light 
hitting the surface area, and is calculated by taking the dot product of the surface normal 
with the relative light direction.  The specular component simulates glossy materials 
whose reflection of light depends more on the incident angle of the light.  It is calculated 
by taking the dot product of the ray with the mirrored direction of the light against the 
surface normal.  It is then raised to some power to simulate “glossiness” where a higher 
power corresponds to more glossy materials.

If the ray intersection is with a reflective surface, we must also add the reflective 
contribution color.  To do this, a reflection ray is created, whose origin is the point of 
intersection and whose direction is the mirrored direction of the incoming ray with the 
surface normal.  The contribution of that ray is calculated just like any other ray and 
multiplied by the reflection coefficient of the intersection point before it is added.  The 
refraction ray of transparent objects are handled similarly by using Snell's law to calculate 
the direction of the refracted ray.

III. Monte Carlo Soft Shadows
The simple raytracer assumes all light comes from a point source, which means 

that every point in the scene is either illuminated by a given light or not.  Point light 
sources thus result in sharp and unrealistic looking shadows.  Instead we would like to use 
area light sources.  To implement this, we would ideally like to integrate the contribution 
of every point on the area of the light.  Using Monte Carlo methods, however, we can 
approximate the integration by shooting many random rays to the area of the light source, 
averaging the contribution of all the rays.

Figure 3: Soft Shadows
(Image taken from 6.837 notes by Durand & Cutler)

IV. Monte Carlo Fuzzy Reflections
The simple raytracer assumes that all reflections are perfect mirror reflections.  In 

reality, there are reflective surfaces that reflect light from many directions.  The amount of 
reflection from each direction can be represented by a probability density function of that 
direction dotted with the mirrored ray direction.  Using the Monte Carlo method, we can 
shoot many rays in random directions for each reflection, averaging their contributions as 
weighted by the probability density function.



Figure 4: Fuzzy Reflections
(Image taken from 6.837 notes by Durand & Cutler)

V. Monte Carlo Depth of Field
The simple raytracer assumes a camera with an infinitely small aperture, which 

results in the entire scene being in focus no matter how close of far an object is.  To 
implement depth of field, we need to introduce a new camera that has a focal distance and 
an aperture.  To calculate the value of a pixel now, we would like to integrate all of the 
light that hits the aperture.  Again, this can be approximated using Monte Carlo by 
shooting many rays with a random origin on the aperture and a direction that goes through 
the pixel's focal point, averaging the contribution of all the rays.

Figure 5: Depth of Field
Image adapted from: http://glasnost.itcarlow.ie/~powerk/Graphics/Notes/node12.html

VI. Reducing the Variance of Monte Carlo Methods
The noise visible in the Monte Carlo images is due directly to the variance 

introduced by the random sampling.  Choosing completely random rays from a uniform 
distribution results in a variance that converges with N , where N is the number of rays 
sampled.  There exists many methods to reduce this variance for a given N, which in turn 
reduces the noise for a given amount of calculation.  The two methods I use in this project 
are importance sampling (Figure 6) and stratification (Figure 7).

Importance sampling chooses rays that have a higher contribution with a higher 
probability.  It can be used in the case of fuzzy reflections by choosing directions 
according to the probability density function which is already defined.

Stratification partitions an area to be sampled into N equal area parts.  A single 

http://glasnost.itcarlow.ie/~powerk/Graphics/Notes/node12.html


random sample is taken within each partition, resulting in a good distribution of selected 
points.  Stratification allows the variance to converge with N – which is a tremendous 
improvement.  This method can be applied directly to the sampling of area lights for soft 
shadows as well as apertures for depth of field.

Figure 6: Importance Sampling  Figure 7: Stratification
(Images taken from 6.839 notes by Durand & Cutler)

VII. Parallelization
There are many ways to attempt to load balance the rays across multiple processes. 

One way is to have each process calculate a region of the image independently.  This 
method however, may result in poor load balancing if some parts of the image have more 
reflections than others.

A better way would be for each process to calculate the entire image independently 
using N/P rays per pixel, where P is the number of processes, and then average all of the 
images.  We have to make sure though that the selection of the N/P rays does not reduce 
the variance improvements brought about in the serial version. 

Importance sampling is purely probabilistic, so there is nothing that must be 
communicated between processes when selecting the rays.  Stratification, however, is 
different.  It is better to have, say, an area partitioned into 16 parts with 1 sample per 
partition than to have the area partitioned into 4 parts with 4 samples per partition. 
Therefore, we must make sure that each process calculates a part of the total stratification 
of N rays instead of it's own stratification of N/P rays.

VIII. Results
If parallelized according to the method described in the previous section, there 

should be a decrease in runtime linearly proportional to the number of processes.  This is 
indeed the case.  Runtimes for a 200x150 image with 16 aperture, 4 shadow, and 4 
reflection rays are 2:31 for 1 process, 1:16 for 2 processes, 0:38 for 4 processes, 0:21 for 8 
processes, and 0:15 for 16 processes.  Runtime gains begin to fall off at 16 processes, most 
likely due to the increased communication time relative to the processing time.

      Figure 8: Simple Raytraced Version Figure 9: Monte Carlo (1 ray per everything)



Figure 10: Mote Carlo (49 rays per aperture, 9 per area light, 16 per reflection)

IX. Conclusion
Raytracing is an embarrassingly parallelize-able algorithm, and the Monte Carlo 

methods are almost as embarrassing.  As long as we take care not to dilute the effect of the 
variance optimizations when we distribute the rays across processes, we can expect an X 
times speed up for an X times increase in the number of processes.


