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A Parallel Implementation of a Higher-order Self Consistent Mean Field

Effectively solving the protein repacking problem is a key step to successful

protein design. Put simply, when designing a protein, one starts with the intended

backbone structure, on which a sequence of residues is to be placed with the ultimate goal

that that sequence natively folds to the desired structure. Important features of these

structures include that the chosen sequence packs in such a way that a minimum of

unfilled space is left within the core of the protein, as well as there are no significant

spatial clashes between atoms. An early method for solving this problem, and still widely

employed, is the rotamer packing method.

A rotamer is the name given to the collection of bond angles which uniquely

define a particular conformation of a residue. Rotamers are usually found in sets called

libraries, where members of these sets are used, computationally, to discretize the

problem of searching over infinite conformational space over many dimensions. Rotamer

libraries are often generated through statistical analysis on known molecular structures,

and can describe a significant fraction of the accessible conformational space of a given

residue. 

The rotamer packing method, at its core, needs to choose the best rotamer out of a

library for each position in a protein chain. Here, the best rotamer is defined as the one

which, out of all other possible rotamers, produces the least amount of clashes with other

residues and stabilizes best the overall structure. Unfortunately, as may be apparent, this

problem is hard to solve simultaneously, especially in a moderately sized protein of 250

residues (and approximately ten rotamers per residue). Therefore, several algorithms are



available which reduce the runtime significantly. One of these algorithms, on which I will

focus the remainder of this paper, is called the Self-Consistent Mean Field.

The first paper describing this method was published by Koehl and Delarue in

1994.1 In it, they describe their application of mean field theory. To be succinct (a

detailed explanation of this theory is given elsewhere2) the theory states that the effective

potential of a given rotamer is given by the sum over all other rotamers of the probability

that that rotamer exists in the final structure multiplied by its true pairwise potential. This

probability can be subsequently calculated using the Boltzmann distribution. These

relationships form the basis for an iterative process whereby effective potentials are

calculated for each residue and then probabilities (stored in what the authors term the

conformational matrix) are calculated on the basis of the effective potentials. This

process converges over 20 or fewer rounds. At the end of the process the best rotamer can

be selected simply by choosing the one with the highest probability in each residue

position.

The advantage of this procedure is that it operates in linear time with respect to

the number of residues. Unfortunately, it works under an assumption that residues which

exhibit statistical dependence on one another will eventually choose the right rotamer

through this iterative process. However, this assumption has not been shown to be true.

To put forth some evidence in resolving this, and perhaps to create a more accurate

version of this method, I added explicit dependence to the self-consistent mean field

(SCMF).

In the original SCMF definition, each group of rotamers was a single residue. In

my new definition, each group is actually comprised of the rotamers from several

1 Koehl, P and M. Delarue. J Mol Bio 239, 249-275 (1994).
2 Koehl, P and M. Delarue. Curr Opin Struct Biol 6, 222-226 (1996).



residues. Therefore, the number of rotamers is now the product of the number of rotamers

from each comprising residue, and each new rotamer set contains a rotamer from each

comprising residue. Otherwise, everything is computed identically. This has the benefit

that when the number of rotamers in each residue group is set equal to one, the algorithm

computes the original SCMF. This will be useful in final comparisons.

One major issue with this

method is that as the size of each

group grows (what I term the

dimensionality of the problem) the

number of rotamer sets grows

exponentially. Table 1 shows this

growth for a small protein. As one of

the steps to mitigate the computational impact of this growth, I have implemented this

solution using parallel computing. My implementation uses straight C/MPI with a

minimum of outside libraries (only libm).

In preparing the parallel implementation of this, some hurdles had to be

overcome. The first involved memory issues. The original SCMF precalculated all the

per-residue true potentials, since these did not change over the course of the calculation.

However, it became quickly apparent to me that the size of this calculation would exceed

the memory capacity of our cluster if the dimensionality went much higher than two or

three. To mitigate this, I elected to recalculate all true potentials at each iteration. This

had the advantage of allowing larger calculations to continue, but at the cost of a

significantly longer runtime. The second hurdle involved load balancing. The basic unit

of the computation is the rotamer set. However, different residue groups have different

D Groups Sets/group Total sets

1 100 10 1000

2 50 100 5000

3 34 1000 34000

4 25 10000 250000
Table 1. Exponential growth of higher-order
SCMF. The example given is with a 100 residue
protein with an average of 10 rotamers per
residue.



numbersof rotamersets– sometimesvery significant differencesas the dimensionality

growslarger.To mitigate this, I hadto divide the residuegroupsamongthe processors

suchthat thenumberof setsperprocessorwasroughlyequal.This did not helpwhenthe

dimensionalitygrew large,however,sincesomegroupswould havemoresetsthancould

bedistributedamongthe otherprocessors.This createda bottleneckwhereaddingmore

processors did not decrease runtime.

In orderto evaluatetheresultsof my code,a

number of different metrics could be used.

UnfortunatelyI only hadsufficienttime to test,in a

somewhatlimited fashion,a simple but effective

metric. RMSD (root meansquaredeviation) is a

commonmetric in the proteinstructurefield since

it quickly providesa numberwhich can be easily

comparedbetweenotherstructuresof thesamemoleculeTable2 reportsthe resultsfrom

calculatingthe RMSD betweenthe templatestructureand the best SCMF calculated

structurewith variousdimensionalities.It is clear that the RMSD doesdecreaseas the

dimensionality increases;however, it is interesting to note that the RMSD between

variousrecalculatedstructuresis muchhigherthanthe differencebetweentheir RMSDs

againstthe templatestructure.This suggeststhat increasingthe dimensionalitydoesnot

uniformly increasethenumberof “best” choices– in otherwords,thechangesfrom D=2

to D=3 arenot simply a few betterchoicesbut a collection of different choiceswhich

overall total a better score.

Any reporton sucha parallelprocesswould beincompletewithout somemention

of runtime.It is interestingto note that I anticipatednearly a p-fold speedupgiven the

D RMSD

1 18398.3

2 18392.3

3 18323.7

4 18318.4
Table 2. RMSD comparisons
between template structure and
best SCMF calculated structure.
Tests done using PDB ID 1NLM.



nature of the calculation which is quite

simply parallelized. However, the

bottlenecking issue did come into play

quite strongly, especially at the higher

dimensionalities. Figure 1 shows these

results. At D=1, the curve is nearly linear,

reflecting p-fold speedup. However, at

higher dimensionalities, the curves become

bent, suggesting some alternate effects. The

bottlenecking effect is unpredictable and appears to have been shown, in this instance, at

NP=8 for D=3 as well as NP=16 for D=2. One test run was done at D=4, for NP=16 only,

which took 7820 seconds. This test was not repeated at lower processor numbers, and no

tests were performed at higher dimensionalities, for reasons of time constraints.

There are still many aspects of this project which are left open for improvement.

One clear item is that during the course of this algorithm, many rotamer sets are

generated which ultimately have such a low conformational matrix value that they never

could be viable final candidates. To cull these sets would dramatically decrease

processing and would allow for easily doubling the maximum possible dimensionality.

The program is structured such that removing these sets would not be too difficult;

however, no time was available to implement such a step. Also, the bottlenecking issue

could be resolved by breaking up residue groups; however, culling those sets which are

very large would probably have a much greater impact. Finally, it should be mentioned

that the current version of the program creates groups by sequential addition; this is not

the best strategy structurally speaking since residues often interact over large sequential

Figure 1. Runtime analysis performed on
PDB ID 1NLM.
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distances. A clustering algorithm could identify those clusters of residues which would

benefit most from being grouped together. 

Overall, this project has shown success in implementing a parallel, higher-order

self-consistent mean field. Preliminary results do suggest that such an implementation

produces better results overall than a similar, first-order method. Further improvements

are possible which could allow for a further increase in dimensionality as well as more

accurate clustering. While it is unlikely that this method will ultimately gain widespread

use (due to other, advanced algorithms which perform well on single-processor

workstations) this may prove to be the most accurate method available.


