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Abstract

Here I present an implementation of a parallel MPEG-2 encoder. This encoder is
unique in that it employs the principles of graph partitioning to distribute the workload
among processors and to improve upon the encoded video quality. I show that the pre-
processor provides significant quality and performance gains with a relatively small
amount of overhead.
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1 Introduction

The MPEG-2 standard is incredibly popular for encoding consumer video and as such,
it is advantageous to examine the encoding algorithm in a parallel context. The goals of
this project are first to produce a parallelized MPEG encoder with a performance increase
proportional to the number of processors. In order to achieve this, the standard algorithm
is modified to avoid bottlenecks in disk access and inter-process communication.

The second goal of this project is to use graph partitioning to improve both the load
balancing among processors and to create high quality video files. T will show that a video
sequence that is properly partitioned for encoding will produce a better output stream with
a lower file size. For this purpose, I use the ParMETIS partitioning library. The MPEG
encoder is based on the commonly-available MSSG implementation.

This particular implementation differs from other parallel encoders primarily in the use
of a graph partitioner as a pre-processor. The Berkeley Multimedia Research Center has
released a parallel MPEG encoder which is similar in that it parallelizes the video stream
in the temporal direction.! However, the BMRC encoder requires three auxiliary processes:
the master server, a decode server, and a combine server. My implementation eliminates the
need for these separate servers and uses a pre-processor to minimize communication between
servers.

The Cornell parallel MPEG encoder is written in their own Resolution Independent Video
Language and is designed to run on heterogeneous and unreliable hardware.? Thus, it has
totally different architectural and performance requirements. It is similar, though, in that it
uses a “scene detector” to optimize performance prior to encoding.

2 The MPEG-2 Standard

MPEG-2 is a common video encoding standard employed most notably in the Digital Ver-
satile Disc (DVD), but it is also used for Internet video in both streaming and non-streaming
applications. MPEG compresses raw video into a much smaller format by exploiting similar-
ities between frames (temporal redundancy), similarities within a frame (spatial redundancy),
and removing detail that is undetectable to the human eye.

The quality of an MPEG video and the size of the file are determined by the particular
MPEG encoder and its run-time options. A good MPEG encoder may create very high-
quality files, but it may also take more time to encode the file. Most encoders are adjustable
such that the user can compress the video to a target bit rate.

2.1 Discrete Cosine Transform

The discrete cosine transform is performed on a single frame in order to exploit any spatial
redundancy that exists in the picture. For instance, in Figure 1, we see that each picture
has a huge area of snow around the skier. The storage required for this frame decreases
dramatically if we account for this feature.

1Gong, “The Parallel Berkeley Encoder,” 1995
2Dawson, “Optimal Parallel MPEG Encoding,” 1995



The particular DCT algorithm can vary between encoders. For my purposes, I use the
code from the MSSG serial implementation, which is based on the fast Chen-Wang 1984
algorithm.® This algorithm scans the frame in a “zigzag” pattern and produces the DCT
coefficients for each macroblock.

The DCT coefficients are ‘quantized,” meaning that their lower order bits are dropped,
under the assumption that this information would be invisible to a person. The resulting
coefficients are Huffman coded using fixed tables. Interestingly, this process is very similar
to the common JPEG compression for still pictures.

2.2 Motion Vector Prediction

A scene within a movie consists of multiple shots, each taken from a viewpoint that is
either stationary or slowly moving. The result is that within each shot, the picture changes
only slightly between frames. An MPEG encoder takes advantage of this fact by predicting
the content of a frame based on those that come before and after. This process, called motion
vector prediction, is the second of the two compression techniques employed for MPEG video.

(a) (b)

Figure 1: Temporal Redundancy

Examine Figure 1, which shows two adjacent frames of a video sequence. As you can see,
the skier’s head remains at the top center of the screen, but the tip of the skis have moved
slightly to the left. The encoder searches for this type of similarity and uses this to form a
prediction about frame (b) based on frame (a).

MPEG is often described as a “block-based coding scheme”.* Each frame is divided into
macroblocks, which are 16 x 16 blocks of pixels (See Figure 2). According to the standard,
the frame dimensions do not have to be a multiple of 16, but in practice they usually are.

3MSSG, “MPEG-2 Video Encoder,” 1994
4Fogg, “Questions that Should Be Frequently Asked About MPEG,” 1996
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Figure 2: Macroblocks

The motion vector prediction can be performed for a given frame (called F in Figure 3),
relative to a reference frame (called R). For every macroblock in F, the encoding algorithm
searches for a similar block of pixels in R. When a good match is found, the matching pixels
are subtracted from the macroblock in F. The encoded macroblock then consists of the
displacement vector and the difference between the two blocks. This new format requires
much less space than the original raw pixels.
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Figure 3: Candidate Motion Vectors

2.3 Sequence Structure

Of course, motion vector prediction only works for frames that are similar to each other.
So it only makes sense to use motion vectors for frames that are nearby. The MPEG standard
specifies three types of frames, as demonstrated in Figure 4. The first type is the I type, for
“Intra-coded”. The I frame does not reference any other frames, but it is compressed using
the DCT described in section 2.1.

The P type frame (for “Predicted”) contains references to the most recent I frame only.
Within a predicted frame, each macroblock might be coded with a motion vector, or it might
be coded “Intra,” without a reference. Consequently, a P type frame may also be coded Intra
such that it does not reference the I frame at all.



Figure 4: Frame Types

Finally, the B type frame (for “Bi-directional,” though it is also called “Interpolated”)
can contain references to the most recent I frame in the past and the next P frame in the
future. For instance, the prediction for a single block might be determined as a weighted
sum of both a forward and a backward reference. It possible for a frame to be based on a
frame in the future because the encoder always stores the P frame before the B frames. So,
a sequence of frames such as: Iy By By Bs P, would actually be stored as: Iy Py By By Bs.
A group of pictures is defined as an I frame and all of the following frames until the next I
frame.

The specific sequence of I, P, and B frames is completely up to the encoder, but it
has a significant impact on the quality and file size of the encoded video. Techniques for
determining such a sequence will be discussed further in section 3.2.

2.4 The Encoding Loop

Figure 5 is a flow-chart of the main loop of the MPEG encoder. The dotted arrows
represent a disk read or write. By far, the most time-intensive part of the computation is
the motion estimation. The reason is that for every macroblock in a predicted frame, the
encoder searches a larger area of the reference frame for a close match.

Typically, the search dimensions are between £15 and 432 pixels.® This means that it
must search between 961 and 4,225 different positions for a good match. Of course, the real
algorithms are a bit smarter than that, but this at least demonstrates that the running time
for the motion estimation increases quadratically with the size of the search window.

The second most time-intensive computation is the DCT. The running time of this step
is proportional to the area of the frame, so it is also a quadratic function of the dimensions.
Of course, the motion vector search skips all I frames, but I frames make up a small fraction
of the frame sequence.

5Fogg, “Questions that Should Be Frequently Asked About MPEG,” 1996
2g y
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Figure 5: The Encoding Loop

The complete transform is computed prior to writing the encoded frame to disk. Finally,
for I and P frames, the encoded version is decoded so that they can serve as reference for
other frames. It is important that motion predictions refer to the decoded frame rather
than the original frame because in the end, the decoder does not have access to the original
version.

In section 3.1 I will discuss how we can achieve better performance through parallel
processing.

3 Implementation

The parallel MPEG encoder implementation is based on the serial implementation written
by the MSSG.® Specifically, the motion vector estimation and the DCT remain unchanged.
But the read and write methods are updated to minimize conflicts between processors.
However, the most significant change is the addition of a pre-processor (described in sections
3.2 and 3.3) which divides the workload evenly among the processors and also produces
higher-quality MPEG video than the MSSG version. The encoder is implemented in C/MPI.

SMSSG, “MPEG-2 Video Encoder,” 1994



3.1 Parallel Computation

As noted above, the most computationally intensive parts of the encoding process are the
motion estimation and the discrete cosine transform. The DCT of a frame is independent of
any other frames and the motion estimation is dependent only on the closest I and P frames.
Therefore the encoding process can be distributed among processors by splitting the movie
at the I frames.

The MSSG encoder reads the video stream on a frame-by-frame basis. But in a parallel
context, this scheme makes little sense. This would cause processes to block frequently
on disk access, and so would undermine the benefits of parallel computing. The solution
to this is to read a group of pictures at a time. All motion vector references would be
contained within the group, so no further disk access would be required until that group is
fully encoded.

3.2 Partitioning

Recalling the definitions of I, P, and B, frames in section 2.3, it is obvious that the
different types require different amounts of storage and produce various quality video. For
instance, if a movie were made completely of I frames, then each frame would be as detailed
as a JPEG picture. However, such a movie would require much more space to store.

Most encoders use a fixed pattern of frame types in order to encode the video. For
example, one common pattern would have an I frame once every 15 frames (1/2 a second)
and would insert a P frame once every three, like this:

]0 Bl BQ PS B4 B5 P6 B7 BS P9 BlO Bll P12 B13 B14 115 BlG B17 P18--~

Yet this method is far from optimal. The natural place for an I frame is at a cut or a
scene transition, where ever the video is changing the most. A fixed sequence would not
account, for this transition, and so could harm the quality of the video or increase the file
size. For quality, it is desirable to have variable sequences of frames, such as:

Iy By P, B3 By Bs Bg By Is Py Py Bi1 Bia Bis 114 Bis Big Bir Pis...

This is where graph partitioning becomes useful. Assume that we could perform some
quantitative analysis of the relation between a frame and every other frame in the sequence.
These relations could be represented as a weighted graph, where each node is a frame and
each edge weight denotes the similarity between the frames.

In order to perform this graph partitioning, the encoder requires a pre-processor. The
pre-processor constructs this weighted graph with a single pass of the entire video stream
and produces a partitioning of the stream that can be used to determine the proper frame
sequence.

3.3 The Pre-processor

The pre-processor is designed to create a “good” partitioning of the video stream from a
single pass of the data. A good partitioning would split the video stream at scene changes



and cuts and avoid splitting it between very similar frames. However, since this would involve
extra overhead, it is preferable to make the pre-processor run in parallel as well.

The first step is to generate a weighted graph, in the form of a sparse matrix, where each
node represents a frame in the sequence and each edge represents a similarity between two
frames. The actual edge weights are calculated by subtracting the pixels of one frame from
another. A more accurate method would perform all the motion vector searches, but this
would be incredibly slow and redundant.

Most frames will be similar to those around it, and no more. The result is a fairly linear
graph, such that the matrix representation would only have elements close to the diagonal.
This step can be easily distributed among multiple processors. The weighted graph is stored
in the distributed compressed storage format (CSR) described in the ParMETIS manual.”

Once the weighted graph is constructed, the pre-processor uses the ParMETIS graph
partitioning library. ParMETIS is designed to compute high quality partitionings for very
large graphs, especially when the input graph is already well-distributed among processors.
In this case, the frames would first be distributed evenly among the processors, so we can
expect the ParMETIS algorithm to run quickly.

N 0 N Om | O O O O O O O .

Processor 0 Processor 1 Processor 2

Figure 6: A p-way partitioning followed by a k-way partitioning

As of ParMETIS version 2.0, the graph partitioning algorithm can produce a k-way
partitioning on p processors (as opposed to just a p-way partition). The pre-processor will
run the partitioner twice (see Figure 6). First, it will create a p-way partition to distribute
the data among the processors. Second, it will create a k-way partition to divide the video
into groups for encoding. For the purposes of this implementation, we will choose k such
that the average group will consist of about 0.5s of video, which is common for commercial
encoders.

In this manner, we will achieve a high quality partitioning for better load balancing and
high quality encoding.

"Karypis et al., “ParMETIS: Parallel Graph Partitioning and Sparse Matrix Ordering Library,” 2003



4 Results

Unfortunately, I was not able to finish the ParMETIS version of the MPEG-2 encoder.
The preprocessor completes the weighted graph and creates the compressed storage format,
but the ParMETIS function crashes consistently.

However, I did create a parallel version without graph partitioning, so that I could use
it as a basis for comparison. The non-partitioned encoder distributes the groups in parallel,
but uses a fixed sequence for determining I, P, and B frames.

The parallel encoder was tested against the normal encoder by ensuring that when the
output is decoded, it exactly matches the input files.

Two input files were used: a short, 100-frame sequence, and a long, 1516-frame sequence.
The long sequence performed close to ideal, whereas the encoding time for the short video
was dominated by overhead. (See Figures 7 and 8.)
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Figure 8: Encoding Time per Processor
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5 Future Work

Though the pre-processor has its advantages, it also requires the entire raw video to be
available before encoding. This precludes it from being used in any streaming applications.
(Note that the encoded file can still be sent over the Internet and viewed in a streaming
fashion.) Omne such application would be a television recorder. In that case, it is preferable
to compress the video as it is captured and saved to disk.

This implementation could be modified to support streaming encoding, though with
possible loss of quality. The encoder would have a FIFO buffer of raw footage to which it
would constantly add frames and from which it would constantly remove frames. Each time
data is added or subtracted, the weighted graph could be repartitioned quickly, as this is a
feature of the ParMETIS library. In this way one might create a streaming, or single-pass
encoder with the benefits of a pre-processor.

Additionally, the encoder would benefit from an enhanced file server. Currently, frames
are read and written over NFS to the frontend server. The file access is performed only at
certain intervals in order to avoid bottlenecks, but it could be more efficient with a dedicated
file server.

11
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