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Introduction 

 Image processing is an important topic with a variety of both commercial and 

recreational applications.  Adobe Photoshop software (or any similar photo editing tool) 

offers a variety of effects that can be applied to pictures for enhancing the quality or 

changing the ambiance.  Matlab also has some built in image processing techniques.  For 

almost all intents and purposes these tools are all that is necessary to meet the 

requirements of a typical photo-editing user. 

 Imagine, however, a satellite taking pictures of the ground on a daily basis.  These 

pictures could be huge, and the number of pictures goes up quickly as the satellite 

attempts to cover a large area of space in significant detail.  Now imagine that this 

satellite takes pictures of this area every day, or every hour, or every minute.  Clearly the 

volume of data produced by this satellite is huge, and a person will not be able to look at 

every individual image for meaning.  Automatic image processing could be an invaluable 

tool for tracking storms, movements of troops, or deforestation over several days.   

 This is where performance requirements begin to come into play, and it starts to 

make sense to develop high-performance image processing tools.  To this end, I have 

chosen as my project the development of a basic image processing tool that works in 

parallel. 

 

Image Processing Overview 

 Image processing offers a wide variety of tools and abilities, but is largely all the 

same basic operation.  We start with the idea of a digital image as a bitmap.  Once we 

know the height and width of the image in bits (usually found in a header), then we 

represent each pixel as a fixed number of bits.  In a black and white image, this can be 

done by representing each pixel as an 8-bit number from 0-255.  Black is represented as 

0, while white is 255.  Clearly everything in the middle is grey, with lower numbers 

being darker, and higher ones being lighter.   



To represent a color image as a bitmap, the same can be done with each of three 

color components (red, green and blue) being represented by an 8-bit number at each 

pixel.  By adding these three color components we can produce every color in the 

spectrum (000000 is black and FFFFFF is white, with everything else in between).  Thus 

an image is basically a matrix of color components, and so we can perform matrix 

operations on it! 

 The majority of image processing relies on the relationship between a pixel and 

its neighbors.  One nice way of applying filters in image processing (which is also handy 

in signal processing) is convolution.  Convolution is a discrete processing technique that 

involves adding up a series of products of filter components and nearby data values to 

determine the new value of a point.  Convolution can also be done in the continuous 

domain via integration, but this is not necessary for image processing.   

 In discrete signal processing, neighbors are usually chosen in the time domain, 

with the new value of a point being the result of a filter applied to the points immediately 

preceding the point, immediately following it, and the point itself.  In image processing 

neighbors are chosen in the spatial domain, with the obvious choices being pixels 

immediately above, below, and to the side of a particular pixel.  The result is a filter that 

is generally square that moves over the entire image. 

 Some filters are easy to understand the effects of, while some are more difficult.  

One simple filter is a blurring filter, which is basically a unity-summing matrix of 

identical values.  A 3x3 blurring matrix is a 3x3 matrix with 1/9 in each position (see 

Figure 1).  A 5x5 would have 1/25 in each position.  The result of the convolution of this 

matrix with an image is that each pixel’s new value will be 1/9 of each of the 9 pixels 

forming the 3x3 square with the pixel at the center.  Thus the new value is the average of 

the nearby values, and the image gets blurred.   

 



 
Figure 1:  The 3x3 Blurring Matrix 

 

 Similar reasoning reveals that the matrices of Figure 2 have a sharpening effect on 

images that increases the contrast between individual pixels.   In the left filter, the pixel 

itself gets embellished while it’s immediate neighbors above, below, and to the side, are 

subtracted.  In the right filter all neighbors are subtracted equally, and the pixel itself is 

embellished even more. 

  

 

 

 

 

 
Figure 2: 3x3 Sharpening Matrices 

 

There are several other image processing filters available, and they can grow in 

size well beyond 3x3 or 5x5.  As the size of the filter grows, the computation time 

increases by a factor of N2, so parallelism becomes important with large filters on large 

images. 

 

Implementation 

 

 Although Matlab offers a variety of built in convolution packages, they are not 

readily adaptable to parallelism, and are not supported by StarP.  For this reason I chose 



to do my implementation in MPI using C, with some basic image reading and writing 

steps done in Matlab.   

 The first step was to convert images of arbitrary formats to byte arrays that could 

be loaded into MPI.  Fortunately, Matlab has functionality for loading images in as 

matrices, and using these it was relatively straightforward to write a function that would 

load an image and output it as a matrix text file.  I knew that the project would also 

require me to convert from text back to images, and this was also most easily done in 

Matlab.  The result was four Matlab functions, img_read, img_write, img_read_color, 

and img_write_color, for converting between images and text.  These four scripts can be 

found in the Appendix.  The color image functions create three text files, one for each 

color, or read from three text files to generate the full color image.   

 Once the images were storable and readable from text files, it was only a matter of 

performing parallel convolution on the image and filter.  This was done in an MPI 

program, ImgProcess.c, which can also be found in the Appendix.  The ImgProcess 

program takes three input arguments, representing 3 files: the input image, the filter, and 

the name to write the output image to.  The input image is stored in a specific format 

which is a single line with the dimensions of the image, followed by the image itself with 

each column separated by spaces and each row separated by lines.  The Matlab functions 

img_read and img_read_color automatically generate files in the correct format.   

 Once the text “images” are read into the MPI program, they are stored as a matrix 

of doubles and divided among the processors.  Each processor computes n/np rows of the 

output matrix, and to do this requires giving it (n/np + f) rows of the input matrix (since 

convolution depends on local neighbors).  Other algorithms for dividing up the matrix 

were considered, but giving each processor complete rows seemed to be the simplest.  

Each processor also receives a complete copy of the filter.   

 When each processor has all the data it needs, convolution between the image and 

the filter is done in parallel, and each processor reports back the new computed values to 

the root node.  The root node then gathers all of the new values and writes the new image 

to a text file, in a format that can be interpreted by the img_write Matlab function.   

 

 



Experiments 
 

 I also tested four filter sizes: 3x3, 5x5, 15x15, and 25x25.  Blur filters were used 

for all four for performance measurements, but other filters were used to show interesting 

image processing results.  Some new images generated from the small image are shown 

in Figure 5.  The filters used to generate these images can also be found in the Appendix.   

The various filters applied to the large image are shown in Figure 5.  It should be 

noted that because of the size of the image, the effect of the 3x3 filters is not noticeable 

except at very high resolution, so only the more visible filters are shown in Figure 5.   

 
Figure 3:  The Small Image 

 

 
Figure 4: The Large Image 
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Figure 4: Various Filters applied to the Small Image 
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Figure 5: Filters applied to the Large Image 

 



Performance: 

  

 The time to perform each filtering operation was measured by MPI and the results 

were compiled in Excel.  The first result was that for small filters, the overhead 

introduced by the communication steps outweighed the computational benefit introduced 

by parallelism as the number of processors was increased beyond 4.  This behavior can be 

seen in Figure 6, which shows the performance of the 3x3 and 5x5 filter on the small 

image. 

 

 
 

Performance on 256x256 Image (small filters)
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Figure 6: Performance of small filters on small image 

 
Fortunately the performance of the larger filters was significantly better than with 

the small filters.  For the larger filters performance improved all the way up to 32 

processors (although 32 processors was a minimal performance gain over 16).  These 

results can be seen in Figure 7.  The performance of the small filters is also shown as a 

reference, and it can be seen that filter size plays a significant role in the time required to 

perform this operation.  This was expected, as the size of the problem is O(m * n * f2) for 

an m x n image and f x f filter.   

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Performance on 256x256 Image
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Figure 7: Performance of all Filters on Small Image 
 
 

 Similar performance was seen on the large image.  Again, for the 3x3 and 5x5 
filters, performance peaked at 4 processors, but for the larger problems performance 
gains increased all the way up to 32 processors.  These results are summarized in Figures 
8 and 9.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Performance on 2400x3200 Image (small filters)
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Figure 8: Performance of Small Filters on the Large Image 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Performance on 2400x3200 Image
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Figure 9:  Performance of all Filters on Large Image 
 

 Finally we’ll take a closer look at the performance gains from parallelism.  Since 
it is known that the biggest computational problems benefit the most from parallelism 
(and this was seen in Figures 7 and 9), we’ll focus on the large filter over the large image.  
To see how close to ideal this process is, we’ll compare it to the linear best-case scenario.  
This is shown in Figures 10 and 11.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Performance on 2400x3200 Image with 25x25 filter
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Figure 10: Run time of big filter and image versus ideal case 



 
Performance on 2400x3200 Image with 25x25 filter
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Figure 11: Speedup factor for large image and filter versus ideal case 
 

 In both Figures 10 and 11 the actual performance of the big problem is shown in 

light blue, while the ideal performance is shown in dark blue.  Figure 10 shows the run 

time of the big problem versus the ideal case, which is calculated by dividing the serial 

runtime by the number of processors.  It can be seen that the runtime for 2 and 4 

processors is almost ideal, while it tapers off as the number of processors increases after 

that.   This behavior can also be seen in Figure 11, which shows the speedup factor 

introduced by parallelism versus the ideal linear speedup factor.  Again, it can be seen 

that for 2 and 4 processors, behavior is almost ideal, but the performance gains decrease 

as the number of processors grows beyond that.   

 

Conclusion 

 

 It has been shown that image processing can greatly benefit from the introduction  

of parallelism.  As the size of the problem grows, especially the filter, it makes sense to 

perform these operations in parallel and nearly linear performance gains can be seen for 

small numbers of processors.   As the number of processors is increased, there are 



diminishing returns, but performance still improves for big problems.  It appears that 

regardless of the size of the image, performance gains for 8 or more processors will only 

be seen for larger filters, and for small (3x3 or 5x5) filters, it is best to stick with 4 or 

less. 

 

 

 

 

 



Appendix:  
 

 Filters used: 

3x3 blur (other blurs are the same with 1/n2 in each location) 
.11111111  .11111111  .11111111 

.11111111  .11111111  .11111111 

.11111111  .11111111  .11111111 

 

3x3 sharpen: 
0  -1   0  

-1   5  -1 

0  -1   0 

 

5x5 emboss: 
-1 -1 -1 -1 -1  

-2 -2 -2 -2 -2  

 0  0  1  0  0  

 2  2  2  2  2  

 1  1  1  1  1 

 

 



ImgProcess.c 

 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 
#include "mpi.h" 
 
#ifndef MAX 
#define MAX(a,b) ((a > b) ? a : b) 
#endif 
 
#define MAX_LENGTH 50000 
#define MAX_PROCS 128 
 
#define IND(m,n,i,j) ((i) * (n) + (j)) 
#define GET(m,n,i,j) ((m)[IND(m,n,i,j)]) 
#define SET(m,n,i,j,v) ((m)[IND(m,n,i,j)] = (v)) 
 
double * alloc_matrix(int m, int n) 
{ 
  return (double *)malloc(sizeof(double) * m * n); 
} 
 
void print_matrix(FILE *fp, int m, int n, double *mat) 
{ 
  int i, j; 
  for(i = 0; i < m; i++) 
    { 
      for(j = 0; j < n; j++) 
 { 
   fprintf(fp, "%f ", GET(mat,n,i,j)); 
 } 
      fprintf(fp, "\n"); 
    } 
} 
 
void read_matrix(FILE *fp, int m, int n, double *mat) 
{  
   
  char line[MAX_LENGTH];   
  char *temp = NULL; 
  int i, j; 
  double value; 
 
  for(i=0;i<m;i++) { 
    if(fgets(line, MAX_LENGTH, fp) == NULL) break; 
    temp = strtok(line, " \t\r\n"); 
 if (temp == NULL) { 
  //printf("empty line...\n"); 
  fgets(line, MAX_LENGTH, fp); 
  temp = strtok(line, " \t\r\n"); 
 } 
 //printf("line is %s \n", line); 
  
 for(j=0;j<n;j++) { 



      value = atof(temp);       
      SET(mat,n,i,j,value); 
      if(!(temp = strtok(NULL, " \t\r\n"))) break; 
    } 
  }   
} 
 
/** Convolve an m x n image and f x f filter at location x, y, 
returning the new value */ 
 
double convolve(double *img, double *filter, int x, int y, int m, int 
n, int f_size) { 
 int width = f_size / 2; 
 int i, j, indx, indy; 
 double val, fval, result; 
 result = 0; 
 for (i=0; i<f_size; i++) { 
  indx = x - width + i; 
  for (j=0; j<f_size; j++) { 
   indy = y - width + j; 
   if (indx < 0 || indy < 0 || indx >= m || indy >= n) { 
    val = 0; 
   } else { 
    val = GET(img, n, indx, indy); 
    fval = GET(filter, f_size, i, j); 
    result += val * fval; 
   } 
  } 
 }  
 return result; 
} 
 
int main(int argc, char* argv[]) { 
 
 char in_filename[MAX_LENGTH]; 
 char out_filename[MAX_LENGTH]; 
    char filter_filename[MAX_LENGTH]; 
 FILE* outFile; 
  
 unsigned int myRank, numProcs; 
 
 double tStart, tFinish; 
 
 int m, n, f_size, f_size_tot, i_size_tot; 
 double* img_in; 
 double* img_out; 
 double* filter; 
    double* partial_out; 
   
 double* tmp_result; 
 double* tmp_mat; 
 double* local_matrices; 
   
 MPI_Status stat; 
 MPI_Init(&argc, &argv); 
   
   



 MPI_Comm_size(MPI_COMM_WORLD, &numProcs); 
 MPI_Comm_rank(MPI_COMM_WORLD, &myRank); 
 
   
  // Fragment to process the command line parameters 
  /**if(myRank == 0){ 
    if (argc < 3){ 
      fprintf(stderr,"%s inputfile power\n", argv[0]); 
      MPI_Finalize(); 
      exit(-1); 
    } 
  */   
  
 
 if (myRank == 0) { 
     char first_line[MAX_LENGTH];   
  char *tmp = NULL; 
   
   
  
   
  // read in arguments 
  sprintf(in_filename, "%s", argv[1]); 
  sprintf(filter_filename, "%s", argv[2]); 
  sprintf(out_filename, "%s", argv[3]); 
 
  // read in image matrix 
  FILE *in = fopen(in_filename, "r"); 
  fgets(first_line, MAX_LENGTH, in); 
  tmp = strtok(first_line, " "); 
  m = atoi(tmp); 
  tmp = strtok(NULL, " \n\t"); 
  n = atoi(tmp); 
  printf("input file is %s \n", in_filename); 
  printf("reading a %i by %i image.\n", m, n); 
   
  img_in = alloc_matrix(m, n); 
 
  read_matrix(in, m, n, img_in); 
  fclose(in); 
   
  // read in filter 
  FILE* filterFile = fopen(filter_filename, "r"); 
  fgets(first_line, MAX_LENGTH, in); 
  tmp = strtok(first_line, " \n\t"); 
  f_size = atoi(tmp); 
  if (f_size % 2 != 1) { 
   printf("Filter size of %i is invalid, must be odd\n", 
f_size); 
   exit(-1); 
  } 
  printf("filter file is %s \n", filter_filename); 
  printf("reading a %i by %i filter.\n", f_size, f_size); 
  filter = alloc_matrix(f_size, f_size); 
  read_matrix(filterFile, f_size, f_size, filter); 
  //print_matrix(stdout, f_size, f_size, filter); 
  outFile = fopen(out_filename,"w+"); 



 } 
  
 tStart = MPI_Wtime(); 
    MPI_Bcast(&n, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
 MPI_Bcast(&m, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
 MPI_Bcast(&f_size, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
 i_size_tot = m * n; 
    f_size_tot = f_size * f_size; 
 if (myRank != 0) { 
  img_in = alloc_matrix(m,n); 
  filter = alloc_matrix(f_size, f_size); 
 } 
    MPI_Bcast(img_in, i_size_tot, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
 MPI_Bcast(filter, f_size_tot, MPI_DOUBLE, 0, MPI_COMM_WORLD); 
 int nrows = m / numProcs; 
 int nelts = n * nrows; 
 
    partial_out = alloc_matrix(nrows, n); 
 
 //print_matrix(outFile, m, n, img_out); 
 //print_matrix(outFile, f_size, f_size, filter); 
    
 int start = nrows * myRank; 
 int end = nrows * (myRank + 1); 
 printf("proccessor %i of %i starting at row %i and ending at row 
%i of %i \n", myRank, numProcs, start, end, m); 
     
     
 
 int i, j, xind; 
 double val; 
 for (i=0; i<nrows; i++) { 
  for (j=0; j<n; j++) { 
   xind = i + start; 
   val = convolve(img_in, filter, xind, j, m, n, 
f_size); 
   SET(partial_out, n, i, j, val); 
  } 
  //printf("done, row %i\n", xind); 
 } 
 //printf("breakpoint 1 \n"); 
 //print_matrix(stdout, nrows, n, partial_out); 
 img_out = alloc_matrix(m,n); 
    MPI_Gather(partial_out, nelts, MPI_DOUBLE, img_out, nelts, 
MPI_DOUBLE, 0, MPI_COMM_WORLD); 
 tFinish = MPI_Wtime(); 
 double total_time = tFinish - tStart; 
 if (myRank == 0) { 
  //printf("breakpoint 2 \n"); 
  print_matrix(outFile, m, n, img_out); 
  printf("procs\timg dim\tfilter\ttime\n"); 
  printf("%i\t%ix%i\t%ix%i\t%f\n\n", numProcs, m, n, f_size, 
f_size, total_time); 
  fflush(outFile); 
  fclose(outFile); 
  
 } 



 
  
 printf("processor %i finished \n", myRank); 
 free(img_out); 
 free(img_in); 
 free(filter); 
 free(partial_out); 
 
 MPI_Finalize(); 
 exit(0); 
  } 
 
 

************ img_read.m ************ 

 

function [ status ] = img_read( img_name, text_name ) 
%Read an image and save as a space delimited array of integers 
%  Detailed explanation goes here 
  
I = imread(img_name); 
s = size(I); 
dlmwrite(text_name, s, ' '); 
dlmwrite(text_name, I, 'delimiter', ' ', '-append'); 
  
status = 1; 
 
 

************ img_read_color.m ************ 

 

function [ status ] = img_read_color( img_name, text_name) 
%Read an image and save as a space delimited array of integers 
%  Detailed explanation goes here 
  
I = imread(img_name); 
  
I1 = I(:,:,1); 
I2 = I(:,:,2); 
I3 = I(:,:,3); 
s = size(I1); 
  
name1 = strcat(text_name, 'red.txt'); 
dlmwrite(name1, s, ' '); 
dlmwrite(name1, I1, 'delimiter', ' ', '-append'); 
  
name2 = strcat(text_name, 'green.txt'); 
dlmwrite(name2, s, ' '); 
dlmwrite(name2, I2, 'delimiter', ' ', '-append'); 
  
name3 = strcat(text_name, 'blue.txt'); 
dlmwrite(name3, s, ' '); 
dlmwrite(name3, I3, 'delimiter', ' ', '-append'); 
  
status = 1; 



 
************ img_write.m ************ 

 
function [ status ] = img_write( text_img, write_img ) 
%UNTITLED1 Summary of this function goes here 
%  Detailed explanation goes here 
  
I = dlmread(text_img); 
[x, y] = size(I); 
%I = I(2:x, :); 
I = I(:, 1:(y-1)); 
I = I/256; 
imwrite(I, write_img, 'jpg'); 
 
 

************ img_write_color.m ************ 

 

function [ status ] = img_write_color( text_img, write_img ) 
%UNTITLED1 Summary of this function goes here 
%  Detailed explanation goes here 
  
I1 = dlmread(strcat(text_img, 'red.txt')); 
I2 = dlmread(strcat(text_img, 'green.txt')); 
I3 = dlmread(strcat(text_img, 'blue.txt')); 
  
[x, y] = size(I1); 
I = zeros(x, y, 3); 
I(:,:,1) = I1; 
I(:,:,2) = I2; 
I(:,:,3) = I3; 
%I = I(2:x, :); 
I = I(:, 1:(y-1), :); 
I = I/256; 
imwrite(I, write_img, 'jpg'); 
 


