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Abstract

Suffix Sorting is a common, but computationally intensive algorithmic
problem with applications in bioinformatics, searching, and data compres-
sion. Here we present a parallel Suffix Sorting implementation and apply
it to improve the performance of a common class of data compression
programs.

1 Introduction

Suffix Arrays were introduced by Myers and Manber [1] to solve large text-
searching problems in bioinformatics. Their construction is equivalent to the
problem of Suffix Sorting, a computationally-intensive algorithm with many
applications. Many incremental improvements to the time and space require-
ments of this algorithm have recently been reported in the literature, enabling
new applications from bioinformatic sequence analysis to file compression. Even
so, further improvements are needed to keep pace with the burgeoning sizes of
today’s inputs such as multimedia content and genomic sequence. Paralleized
implementations such as that described by Futamura and colleages [3] can bring
the increasingly ubiquitous power of cluster computing to bear on Suffix Array-
based problems.

Here we present a implementation of Futumura’s parallel Suffix Sorting ap-
proach and apply it to the problem of data compression. The application to
data compression is based on the Burrows-Wheeler Transform, a permutation
transform on strings. It has an inverse transform that is simple to compute and
it has the property that equal characters tend to appear together, making it
is useful for preprocessing data to be compressed, increasing the compressing
ratio.

File Compressors that use this transform (e.g. bzip2) show very good com-
pression rates but are more time-consuming than other common compression
methods like gzip and zip. We hypothesized that a BWT-based compressor like
bzip2 would be an excellent candidate for parallelization.

We implement a Parallel file compression software based on bwtzip [4], a
research-grade file compressor that uses the Burrows-Wheeler Transform. We
implemented our own Parallel Burrows-Wheeler Trasnform and intergrated it
with bwtzip.
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We obtained timing data points for our File Compressor and we observed
very good scalability in most inputs.

2 Suffix Sorting

Given a string a1a2 . . . an, we define si = aiai+1 . . . an. Then the problem of
Suffix Sorting is to lexicographically sort all si for i = 1, . . . , n. This yields the
Suffix Array [1], a permutation of 1, . . . , n: SA1, . . . , SAn such that SAi = j iff
si is the j-th lexicographically smallest suffix of s.

A naive approach might be to use a standard sorting procedure such as
quicksort or radixsort. Running a comparison-based sort such as quicksort
on O(n) suffices, each of length O(n), will grow in runtime as O(n2 ∗ log(n)).
Similarly, the runtime of radixsort on n suffices grows as O(n2) time. Instead,
many suffix sorting algorithms take advantage of the underlying structure com-
mon to a set of suffices.

Applying the methods of Weiner [5] and Ukkonen [6], it is possible to con-
struct a suffix tree, and from that tree derive the sorted suffix array by a lexi-
cographic preorder traversal in both linear time and space. Gusfield [7] gives a
very thorough treatment of this topic.

2.1 Parallelizing Suffix Sort

There are many algorithms for Suffix Sorting that make use of the fact that si

is a suffix of a string and not just any string and therefore perform better than
general sorting algorithms.

In particular, there is a parallel algorithm [3] performing to do just that,
making use of the fact that si is a suffix to distribute in linear time consecutive
suffices to each processor to sort in parallel, so that after that we just need to
concatenate the results of each processor.

This distribution works as follows: Let n be the size of the string, s be the
size of our alphabet and p be the number of processors. We choose a window-size
w and we separate the suffices into buckets according to its first w characters.
At first, this seems to take O(wsw). However, we make use of the fact that
we are working with the suffices of a string: we index the buckets with integer,
ordering them in lexicographic order. Then we compute the index f1 of the
bucket for the first suffix. To compute the index of the bucket for the next, we
use that f2 = (f1 ∗ s + aw+1)(mod sw), which can be computed in linear time.
We proceed this way using fk+1 = (fk∗s+ak+w)(mod sw) to compute the index
of the bucket of each suffix in linear time. Moreover, we do this computation
in parallel, assigning the distribution of the suffices ank

p
through an(k+1)

p −1
into

buckets to processor k, for all k = 0, 1, . . . p − 1.
Now we need to distribute the buckets among the nodes. To do so, we

compute in each processor how many suffices are there in each bucket. Then
we use the MPI Allreduce routine to compute the total number of suffices in
each bucket.
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Then we compute the cummulative sum of the vector of suffices per bucket
and we do our cuts for load balancing in the entries closest to n∗k

p for k =
1, 2, . . . p − 1.

The last step of the algorithm is to (in serial) sort the suffices in each bucket.
Because we are sorting a subset of the suffices, we cannot apply linear-time
suffix-sorting algorithms. Rather, we adapted and used the ternary search tree-
based general string sorting algorithm described by Bentley and Sedgewick [2].

3 Burrows-Wheeler Transform

One interesting application of Suffix Sorting is in computing the Burrows-
Wheeler Trasform: Given a string w = w1w2 . . . wn, we define
ci = wiwi+1 . . . wnw1 . . . wi−1 the i-th circular shift of the original string w.
The Burrows-Wheeler Transform of the string w is given by reading the last
character of each ci in lexicographical order. For example, if we are given w =
parallel, then:

c1 parallel
c2 arallelp
c3 rallelpa
c4 allelpar
c5 llelpara
c6 lelparal
c7 elparall
c8 lparalle

And after sorting these circular shifts we obtain:

c4 allelpar
c2 arallelp
c7 elparall
c6 lelparal
c5 llelpara
c8 lparalle
c1 parallel
c3 rallelpa

And therefore the Burrow-Wheeler Transform is rpllaela, reading the last
column.

3.1 Why is this useful for Compression?

This transform has two useful properties from a compression point of view.
First, its inverse is computable and there are algorithms that do it in a small
time compared to the forward transform. For a description of an algorithm for
the inverse transform, see [8].
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The other useful property is that this Transform tends to gather groups
of a single character (in case the original string has recurring patterns, such
as words). The presence of continous sequences of a repeted character in the
original sequence is good for most compression algorithms, generating good
compression rates. In particular, using a Huffman code [9] in the transformed
string results in very good compression rates in most common data.

Many Compression Algorithms use this transform, in particular the famous
open source bzip2 and the proprietary formats RAR and ACE.

3.2 BWT can be Found by Suffix Sorting

It turns out that BWT is reduced to the problem of Suffix Sorting for the class
of strings having the sentinel character at the end. The sentinel is simply a
character that does not occur anywhere else in the string; it is often denoted $.

Then soring the suffices is equivalent to sort the shifts because any two
circular shifts will differ in a character that appears before any of the strings
wrap around (i.e., before the character w1), so comparing these two circular
shifts is equivalent to compare the corresponding suffices that start at the same
position.

In order to always use sentineled for BWT, we add a symbol to our alphabet
and always insert this symbol in the end of our original string before computing
this transform, remembering to remove it when we compute the inverse.

4 Implementation of Parallel Suffix Sorting

We provide an implementation in MPI/C++ of an adaptation of the parallel
suffix sorting algorithm described by Futamura and colleagues [3]. Although
they mention their own implementation and indeed cite performance experi-
ments, we were unable to find either their code or any other parallelized suffix
sorting implementation on the Internet.

The implementation and headers for our parallel suffix sorting are contained,
respectively, in the files ss_par.cc and ss_par.hh. The main sorting routine,
ss_par_main accepts the following inputs:

• vBuf, a string in the form of an STL vector of type short elements,

• w, the desired window-size,

• a, the size of the alphabet such that for every element si in wBuf, si < w

• _myRank, the rank of the processor on which the code is running,

• _np, the total number of processors over which the code is running, and

• ppvSortedSufIdxs, a vector of indices into which the output suffix array
is stored.
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Our adaptation of the (sequential) Bentley-Sedgewick quicksort is contained in
the files ser_suf_sort.cc and ser_suf_sort.hh. These files are minor adap-
tations of the publicly available implementions provided by Robert Sedgewick
at http://www.cs.princeton.edu/ rs/strings/. We modified their implementa-
tion to take only one input string but also take an array of indices into that
string corresponding to the subset of suffices to be sorted.

5 Integration with BWTZIP and Structure of
code

BWTZIP is a compression software developed by Stephan T. Lavavej and Jo-
ergen Ibsen that uses the Burrows-Wheeler Transform and a adaptive Huffman
encoder [9].

Their code is very modular and implements many different algorithms. The
author describe it as research-based, meaning it is very good for experiment-
ing different algorithms, but not very optimized. This fits very well with our
purpose, so we based ourselves on their code, writing a parallel extension.

The BWTZIP package contains implementations of a few different algo-
rithms for the BWT transform. We add two more, a parallel version
(bwtparallel) implemented with MPI that uses the Suffix Sorting algorithm
by Futamura [3] describe earlier in this paper, and a non MPI serial version
(bwtserial) of the same code.

To introduce the bwtparallel module, we created a new main file
main_bwtparallel.cc that initializes MPI and calls the function bwtzipMain
in bwtzipp.hh, which is a modification of the original bwtzip.h to use MPI
primitives to make sure that work that is supposed to be done in serial is only
executed in node 0 and that BWT is executed in all nodes.

We create bwtzip_parallel.cc based on bwtzip_suffixarray.cc to make
the call to the parallel suffix sorting algorithm that we implemented. The win-
dow size for the parallel suffix sorting is defined in main_bwtparallel.cc and
is currently set to 2.

Also, the Makefile was editted to use mpic++ and the proper flags and to
accept the arguments bwtparallel and bwtserial in order to compile our new
modules.

For further reference about code structure, compiling and running the soft-
ware, refer to the README file under the tar ball.

6 Performance

We measure our performance in terms of the time spent in the Burrows-Wheeler
transform. We measured this running time for three different inputs: a text file
with the book “War and Peace” (3MB), a text file with the first 10MB of the
bases of the human chromossome 19 and a binary file containing a picture in
bitmap format (18MB).
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Figure 1: Results of the timing experiments

For each of these inputs, we timed our programs with number of processors
1, 2, 4, 8, 12, 16, 20, 24 and 30.

In all of the timing experiments we used a window size of 2 for the parallel
sufix sorting. The result of using a window size of 3 was a much slower bucket
distribution due to handling an array of size |Σ|3, where |Σ| = 257, and it was
not worth the benefit in load balance.

The results are shown in figure 6 and show a speedup close to linear, specially
in the input files that generate a better load balance.

7 Load Balance

A crutial part of our suffix sorting code is the distribution of the buckets to the
different processors. The way we do this distribution is the following. Let bi be
the number of suffices in bucket i. Define ti =

∑i
k=1 sk as be the cumulative

sum. If m is the number of buckets and p the number of processors, then we let
ik be such that

|m
p

k − tik
|

is minimal. Then we assign buckets ik, ik + 1, . . . , ik+1 − 1 to processor k, for
k = 0, 1, . . . , p − 1. This is the optimal greedy algorithm for load balancing.
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In the ideal case all buckets would have roughly the same amount of suffices
so if the number of buckets is much bigger than the number of processors we
would expect a very even load distribution. How ever, in common inputs dif-
ferent characters have very different frequencies, therefore different buckets will
have very different amounts of suffices. For example, in the input file containing
the chromosome, the alphabet is very limited, so the suffices end up being con-
centrade in very few buckets, creating a bad load balance. This can be observed
comparing figures 7 and 7.

Also, an increase in the windows size causes a greater diversity of windows,
therefore a smaller granulation of the suffices leading to a better load distribution
among processors. This can be observed comparing the two graphs in each of
the figures 7 and 7.

8 Compression Rate

We can compare the performance and the compression rate of our parallel com-
pressor with the most popular compressors in the market. For all cases we use
the 3MB text input with the book “War and Peace”.

Running time (sec) Compression rate
bwtparallel (p=27) 5.95 (0.87 + overhead) 76%
bwtparallel (p=1) 9.71 (4.65 + overhead) 76%
bzip2 1.8 73%
gzip 0.82 63%
zip 0.88 63%

As you can see, bwtparallel achives the best compression rate. The running
time is considerably slower than the other compressors, but that is reasonable
since we are working with a research-grade code not very fine tuned.

9 Conclusion and Future directions

We presented a parallel implementation of a Suffix Sorting algorithm and demon-
strated an application to the BWT and data compression. Subsituting our
BWT into the freely-available compression program bwtzip, we observed linear
speedup in cpu count for sample inputs while still achieving compression rates
better than and speed on the order of the popular compressor bzip2.
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Figure 2: Load balance for input Chromossome 19 (10M) and window size 2(top)
and 3(bottom)
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Figure 3: Load balance for text input “War and Peace” (10M) and window size
2(top) and 3(bottom)
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