
Parallel Suffix Arrays 
and Applications

Guilherme Issao Fujiwara
Jacob Kitzman

MIT 6.338 - Spring 2005
Professor Alan Edelman



• Suffix Arrays 101

• Applications

• Real World Parallel Suffix Sorting

• Our project

• Results

Order of Business



Suffix Arrays 101
• Suffix Trees

– Internal structure of str.
– Build O(n) time ☺

O(n|∑|) space /
– Many O(n) time apps…
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• Suffix Arrays = Suffix Sorting
– Myers EW, Manber U 1993
– Obtain sorted order of suffices
– Space-efficient: O(n)

Nelson M 1996 Dr. Dobbs J



Selected Applications
• O(n) pattern matching, online unlike KMP
• Genome-scale (106 – 109 chars) alignment

– MUMMER    (Delcher et al, TIGR)

• build suffix tree for query and reference sequences,
• find set of maximal unique matches,
• extend and add gaps with DP.

• EST Clustering
– High redundancy, low quality, short, … and lots!
– Avoid O(n2) all-pairs comparisons.

• Data Compression



Suffix Sorting
• Naively sort?

– Comparison-based: Ω(n2 log n) time,
– Radix: Ω(n2) time

• Trees
– Construct, walk in O(n) space and time.

• Large overhead => impractical.
• Even highly optimzed (Giegerich, 2003) ~9 bytes/char

• Suffix Arrays
– Various worse-cased linear time approaches, 

often slower for practical n than O(n lg n) ones.
Larsen NJ, 1998,   Franek F, 2004,   Larsson 2004



Parallel Suffix Sorting
• Tree-based algo’s parallelizable…

– So far only theoretically, no implementations.

• We implemented approach 
of Futamura et al (2001).

Futamura N, Aluru S, Kurtz S.  “Parallel Suffix Sorting”, Proc 9th Intl Conf Adv Comp and Comm (2001)



Parallel Suffix Sorting
• Approach proposed by Futamura et al

– Divide suffices into buckets

– Sort within buckets,
using general sorting
algorithm

• Bentley & Sedgewick, fast 
tripartioned quicksort. 

– Read out buckets in order

• Must to ensure buckets ordered… how?  
Futamura N, Aluru S, Kurtz S.  “Parallel Suffix Sorting”, Proc 9th Intl Conf Adv Comp and Comm (2001)



EVERYBODYLOVESMPIEVENBOBDYLAN

Sorted Buckets
• Consider input suffix a base |∑| number

– This maps suffix to an integer (bucket #)

• Actually just consider the first w  ‘digits’
– w = ‘window size’
– Then suffices map to {0,1,…, |∑|w-1}

EVERYBODYLOVESMPIEVENBOBDYLAN
s7

w=3

D             Y              L
f(s24) = f(s7)   = 262 x 3 + 261 x 24 + 260 x 11 = 2663

s24

w=3

2663



Now in parallel                    
• Overall goal: Distribute the 

buckets and sort individually.

1. Split string evenly across cpu’s,
find bucket mappings.

Now each bucket has suffices from each processor,
but the bucket’s contents are distributed…

… …

37

s0 from cpu2, s4 from cpu2, s9 from cpu5, …



Load Balancing
2. Collect buckets and redistribute evenly for 

within-bucket sorting.

Allreduce so everybody knows collective size 
of each (distributed) bucket.

Agree 
upon
load
balancing:

s.t. each cpu has a collection of whole 
buckets with roughly equal # of suffs.
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Collect buckets
2. Collect buckets and redistribute 

evenly for within-bucket sorting.

Bucket-to-CPU assignment
known but each CPU has 
suffs from many buckets.

Send partial buckets to 
their owner nodes, and
receive all suffices in the
buckets that belong to 
me.



Sort!
3. Each node now has the suffices in its own 

bucket.  Sort them locally, send sorted order 
back to head node.

Done!



Parallel Buckets: Running time
• Worst case: AAAAAAAAAAAAAAAAAAA……

– Everything in one bucket.
– Ω(n2 log n) and same as sequential algorithm.

• For realistic inputs, not so bad
– Total time O(n log n), and efficient so it 

beats many linear algo’s.

– Except for pathological inputs, we achieve 
linear speedup through np=30.



Application: Fast Compression
• Newer compression algorithms based on 

Burrows-Wheeler Transform (BWT)

• BWT is the most computationally-intensive 
step in compression.      (bzip2, ACE, RAR)

• Efficiently compute BWT via suffix sorting.

• We integrated our parallel suffix sort with a 
compressor that currently relies on BWT
– BWTZIP: A portable research-grade data 

compressor.   (Lavarej ST, unpublished, 2005)



Burrows-Wheeler Transform



Burrows-Wheeler Transform



Results: Performance



Results: Load Balancing
w=2 w=3



Results: Load Balancing

• Better balancing through heuristics in 
suffix distribution.

• Improve through pipelining
– Distribute jobs as soon as ready;
– Bigger jobs to earlier processors.



Versus the Competition
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63%0.82gzip

73%1.8bzip2

9.71 (4.65+overhead)np=1

5.95 (0.87+overhead)np=27

76%bwtparallel
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