HIT (v1.0,0) BEOMAF Cluster PROF EDELHAN

frontend ﬂﬁ[-] 1QE?DPH
node—0 OX[1 14%]

o] 422
s 100 Parallel Suﬁﬁiﬂt:rays

node—4 100% [

EE[
oo 100l and APQE cations

node—7 100%[] EEE[

node—2 100E[- -
node—d 1002 Gmlherme Twara

node—10 1002[JaCOb'ﬁ % f0
node—11 100%[E?E[
node—12 1002 MIT 6.338 - E"slﬂlf’ 2005
node-13 100%[Professor Aljprg.s&;:[elman
node—14 100] 38%[
node-15 OF[1 10E[

Order of Business

Suffix Arrays 101

Applications

Real World Parallel Suffix Sorting
Our project

Results

Suffix Arrays 101

« Suffix Trees NN ey
_ Internal structure of str. | & T

a5

— Build O(n) time © d b d
O(nl|3|) space ® RN \

- Many O(n) time apps... <\ m ./

B ANANAS

mas * Suffix Arrays = Suffix Sorting

AS

BANANAS - Myers EW, Manber U 1993

HQQAS — Obtain sorted order of suffices

> - Space-efficient: O(n)

Nelson M 1996 Dr. Dobbs J/

Selected Applications

O(n) pattern matching, online unlike KMP

Genome-scale (10° - 10° chars) alignment
- MUMMER (Delcher et a/ TIGR)

« build suffix tree for query and reference sequences,
« find set of maximal unique matches,
« extend and add gaps with DP.

EST Clustering

- High redundancy, low quality, short, ... and lots!
- Avoid O(n?) all-pairs comparisons.

Data Compression

Suffix Sorting

« Naively sort?
- Comparison-based: Q(n?log n) time,
- Radix: Q(n?) time

e Trees

— Construct, walk in O(n) space and time.
 Large overhead => impractical.
« Even highly optimzed (Giegerich, 2003) ~9 bytes/char

 Suffix Arrays

— Various worse-cased linear time approaches,
often slower for practical n than O(n Ig n) ones.

Larsen NJ, 1998, Franek F, 2004, Larsson 2004

Parallel Suffix Sorting

« Tree-based algo’s parallelizable...
- So far only theoretically, no implementations.

« We implemented approach
of Futamura et al (2001).

Parallel Suffix Sorting
« Approach proposed by Futamura et al

- Divide suffices into buckets

- Sort within buckets,
using general sorting
algorithm

« Bentley & Sedgewick, fast
tripartioned quicksort.

— Read out buckets in order

« Must to ensure buckets ordered... how?

Sorted Buckets

 Consider input suffix a base |3| number
— This maps suffix to an integer (bucket #)

 Actually just consider the first w ‘digits’

- w ='window size’

- Then suffices map to {0,1,..., [3|¥-1}

EVERYBODYLOVESMP IEVENBOBDYLAN

EVERYBODYLOVESMP IEVENBOBDYLAN

D Y L
f(s,,) =1f(s;) =262x3+261x 24 + 269 x 11 = 2663

Now in parallel

« Overall goal: Distribute the
buckets and sort individually.

1. Split string evenly across cpu’s,
find bucket mappings.
| | |

Now each bucket has suffices from each processor,
but the bucket's contents are distributed...

Load Balancing

2. Collect buckets and redistribute evenly for
within-bucket sorting.

Allreduce so everybody knows collective size
of each (distributed) bucket.

Agree
upon
load
balancing:

s.t. each cpu has a collection of whole
buckets with roughly equal # of suffs.

Load Balancing

2. Collect buckets and redistribute evenly for
within-bucket sorting.

Allreduce so everybody knows collective size
of each (distributed) bucket.

Agree
upon
load
balancing:

s.t. each cpu has a collection of whole
buckets with roughly equal # of suffs.

Collect buckets

2. Collect buckets and redistribute
evenly for within-bucket sorting.

Bucket-to-CPU assignment
known but each CPU has
suffs from many buckets.

Send partial buckets to
their owner nodes, and
receive all suffices in the
buckets that belong to
me.

Yelgd

n node now has the suffices in its own
cet. Sort them locally, send sorted order
< to head node.

Done!

Parallel Buckets: Running time
» Worst case: AAMAAAAAAAAAAAAAAAAA

- Everything in one bucket.
— Q(n? log n) and same as sequential algorithm.

 For realistic inputs, not so bad

- Total time O(n log n), and efficient so it
beats many linear algo’s.

— Except for pathological inputs, we achieve
linear speedup through np=30.

Application: Fast Compression

Newer compression algorithms based on
Burrows-Wheeler Transform (BWT)

BWT is the most computationally-intensive
step In compression. (bzip2, ACE, RAR)

Efficiently compute BWT via suffix sorting.

We integrated our parallel suffix sort with a
compressor that currently relies on BWT

- BWTZIP: A portable research-grade data
compressor. (Lavarej ST, unpublished, 2005)

Burrows-Wheeler Transform

parallel

arallelp

rallelpa

allelpar

llelpara

lelparal

elparall
lparalle

Burrows-Wheeler Transform

parallel

arallelp

allelpar

rallelpa

arallelp

allelpar

elparall

llelpara

lelparal

lelparal

llelpara

lparalle

elparall

parallel

lparalle

rallelpa

=p)

1/ Time np

Speedup (Time np

12

10

Results: Performance

War&Peace (3MB)

——— Chr19 (30MB)
—&— Chr19 (10MB) =

|
5 10 15 20 25 40
Number of Processors (p)

Results: Load Balancing

w=2

w=3

5 it oy - -
ak 10" Load Balance for Chri2(10M) with WlindoS|ze—2 and; numProc=27; s:ld— 1 .QSTDe‘DE ad x10° Load Balance for Chri9(10M) with WindoSize=3 and numProc=27: std=6.8752e+04
4 -
* M + 5t
6} .
+ -
2! | 45} .
§ +
y =4
-] 2
4 =
§ . - o al'® + 1 2 3 4 5 6 7 &8 % 10 11 12
[+] I
=) . - =
E £ . o
3l " " .. |] * -
* - 35| * .
2} o . E E
b 13 14 15 16 17 15§19 820 21 ¥
1t 3} N
a E T i !
0 5 10 15 20 25 30 sl) | . . |
Processor rank D 5 10 15 20 25 30
=] i rank
16 x 10Load Balance for War&Peace(3MB) with WindowSize=2 and numProc=27; std=1.5725¢+04 155 x 10'Load Bal for War&Peace(3MB) with V 3 and numProc=27; std=5.7616e+03
L T T T | B [~ T T T T T =
154 . + + |-|\-..i|\|;:‘_]s|\-
. * 131 .
14} .
. v
1.3F * i
* * 125} i
124 * M . - ¢ . "
I . * + * it + . +
w L 4 pors -
g 1.1 . é 12 .
5
w .
0
1r } .
1151 B
0.9 .
0.8 4 5
111 —
0.7
0.6 L . .
1.05 L L L 1 I
0 5 10 15 20 25 30 5 10 15 20 25 30
Processor rank

Processor rank

Results: Load Balancing

 Better balancing through heuristics In
suffix distribution.

« Improve through pipelining
— Distribute jobs as soon as ready;
- Bigger jobs to earlier processors.

Versus the Competition

Running Time (sec)

Compression Rate

bwtparallel
np=27 5.95 (0.87+overhead)

np=1 9.71 (4.65+overhead)

bzip2 1.8
gzip 0.82
Zip 0.88

76%

73%
63%
63%

