
Parallel Suffix Arrays
and Applications

Guilherme Issao Fujiwara
Jacob Kitzman

MIT 6.338 - Spring 2005
Professor Alan Edelman

• Suffix Arrays 101

• Applications

• Real World Parallel Suffix Sorting

• Our project

• Results

Order of Business

Suffix Arrays 101
• Suffix Trees

– Internal structure of str.
– Build O(n) time ☺

O(n|∑|) space /
– Many O(n) time apps…

B A N A N A S

ANANAS
ANAS
AS
BANANAS
NANAS
NAS
S

1
3
5
0
2
4
6

• Suffix Arrays = Suffix Sorting
– Myers EW, Manber U 1993
– Obtain sorted order of suffices
– Space-efficient: O(n)

Nelson M 1996 Dr. Dobbs J

Selected Applications
• O(n) pattern matching, online unlike KMP
• Genome-scale (106 – 109 chars) alignment

– MUMMER (Delcher et al, TIGR)

• build suffix tree for query and reference sequences,
• find set of maximal unique matches,
• extend and add gaps with DP.

• EST Clustering
– High redundancy, low quality, short, … and lots!
– Avoid O(n2) all-pairs comparisons.

• Data Compression

Suffix Sorting
• Naively sort?

– Comparison-based: Ω(n2 log n) time,
– Radix: Ω(n2) time

• Trees
– Construct, walk in O(n) space and time.

• Large overhead => impractical.
• Even highly optimzed (Giegerich, 2003) ~9 bytes/char

• Suffix Arrays
– Various worse-cased linear time approaches,

often slower for practical n than O(n lg n) ones.
Larsen NJ, 1998, Franek F, 2004, Larsson 2004

Parallel Suffix Sorting
• Tree-based algo’s parallelizable…

– So far only theoretically, no implementations.

• We implemented approach
of Futamura et al (2001).

Futamura N, Aluru S, Kurtz S. “Parallel Suffix Sorting”, Proc 9th Intl Conf Adv Comp and Comm (2001)

Parallel Suffix Sorting
• Approach proposed by Futamura et al

– Divide suffices into buckets

– Sort within buckets,
using general sorting
algorithm

• Bentley & Sedgewick, fast
tripartioned quicksort.

– Read out buckets in order

• Must to ensure buckets ordered… how?
Futamura N, Aluru S, Kurtz S. “Parallel Suffix Sorting”, Proc 9th Intl Conf Adv Comp and Comm (2001)

EVERYBODYLOVESMPIEVENBOBDYLAN

Sorted Buckets
• Consider input suffix a base |∑| number

– This maps suffix to an integer (bucket #)

• Actually just consider the first w ‘digits’
– w = ‘window size’
– Then suffices map to {0,1,…, |∑|w-1}

EVERYBODYLOVESMPIEVENBOBDYLAN
s7

w=3

D Y L
f(s24) = f(s7) = 262 x 3 + 261 x 24 + 260 x 11 = 2663

s24

w=3

2663

Now in parallel
• Overall goal: Distribute the

buckets and sort individually.

1. Split string evenly across cpu’s,
find bucket mappings.

Now each bucket has suffices from each processor,
but the bucket’s contents are distributed…

… …

37

s0 from cpu2, s4 from cpu2, s9 from cpu5, …

Load Balancing
2. Collect buckets and redistribute evenly for

within-bucket sorting.

Allreduce so everybody knows collective size
of each (distributed) bucket.

Agree
upon
load
balancing:

s.t. each cpu has a collection of whole
buckets with roughly equal # of suffs.

Load Balancing
2. Collect buckets and redistribute evenly for

within-bucket sorting.

Allreduce so everybody knows collective size
of each (distributed) bucket.

Agree
upon
load
balancing:

s.t. each cpu has a collection of whole
buckets with roughly equal # of suffs.

Collect buckets
2. Collect buckets and redistribute

evenly for within-bucket sorting.

Bucket-to-CPU assignment
known but each CPU has
suffs from many buckets.

Send partial buckets to
their owner nodes, and
receive all suffices in the
buckets that belong to
me.

Sort!
3. Each node now has the suffices in its own

bucket. Sort them locally, send sorted order
back to head node.

Done!

Parallel Buckets: Running time
• Worst case: AAAAAAAAAAAAAAAAAAA……

– Everything in one bucket.
– Ω(n2 log n) and same as sequential algorithm.

• For realistic inputs, not so bad
– Total time O(n log n), and efficient so it

beats many linear algo’s.

– Except for pathological inputs, we achieve
linear speedup through np=30.

Application: Fast Compression
• Newer compression algorithms based on

Burrows-Wheeler Transform (BWT)

• BWT is the most computationally-intensive
step in compression. (bzip2, ACE, RAR)

• Efficiently compute BWT via suffix sorting.

• We integrated our parallel suffix sort with a
compressor that currently relies on BWT
– BWTZIP: A portable research-grade data

compressor. (Lavarej ST, unpublished, 2005)

Burrows-Wheeler Transform

Burrows-Wheeler Transform

Results: Performance

Results: Load Balancing
w=2 w=3

Results: Load Balancing

• Better balancing through heuristics in
suffix distribution.

• Improve through pipelining
– Distribute jobs as soon as ready;
– Bigger jobs to earlier processors.

Versus the Competition

63%0.88zip

63%0.82gzip

73%1.8bzip2

9.71 (4.65+overhead)np=1

5.95 (0.87+overhead)np=27

76%bwtparallel

Compression RateRunning Time (sec)

