
Mathematics 18.337, Computer Science 6.338, SMA

5505

Applied Parallel Computing

Spring 2004

Lecturer: Alan Edelman1

MIT

1Department of Mathematics and Laboratory for Computer Science. Room 2-388, Massachusetts Institute
of Technology, Cambridge, MA 02139, Email: edelman@math.mit.edu, http://math.mit.edu/~edelman

ii Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Contents

1 Introduction 1

1.1 The machines . 1

1.2 The software . 2

1.3 The Reality of High Performance Computing . 3

1.4 Modern Algorithms . 3

1.5 Compilers . 3

1.6 Scientific Algorithms . 4

1.7 History, State-of-Art, and Perspective . 4

1.7.1 Things that are not traditional supercomputers 4

1.8 Analyzing the top500 List Using Excel . 5

1.8.1 Importing the XML file . 5

1.8.2 Filtering . 7

1.8.3 Pivot Tables . 9

1.9 Parallel Computing: An Example . 14

1.10 Exercises . 16

2 MPI, OpenMP, MATLAB*P 17

2.1 Programming style . 17

2.2 Message Passing . 18

2.2.1 Who am I? . 19

2.2.2 Sending and receiving . 20

2.2.3 Tags and communicators . 22

2.2.4 Performance, and tolerance . 23

2.2.5 Who’s got the floor? . 24

2.3 More on Message Passing . 26

2.3.1 Nomenclature . 26

2.3.2 The Development of Message Passing . 26

2.3.3 Machine Characteristics . 27

2.3.4 Active Messages . 27

2.4 OpenMP for Shared Memory Parallel Programming 27

2.5 STARP . 30

3 Parallel Prefix 33

3.1 Parallel Prefix . 33

3.2 The “Myth” of lg n . 35

3.3 Applications of Parallel Prefix . 35

3.3.1 Segmented Scan . 35

iii

iv Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

3.3.2 Csanky’s Matrix Inversion . 36

3.3.3 Babbage and Carry Look-Ahead Addition . 37

3.4 Parallel Prefix in MPI . 38

4 Dense Linear Algebra 39

4.1 Dense Matrices . 39

4.2 Applications . 40

4.2.1 Uncovering the structure from seemingly unstructured problems 40

4.3 Records . 41

4.4 Algorithms, and mapping matrices to processors . 42

4.5 The memory hierarchy . 44

4.6 Single processor condiderations for dense linear algebra 45

4.6.1 LAPACK and the BLAS . 45

4.6.2 Reinventing dense linear algebra optimization 46

4.7 Parallel computing considerations for dense linear algebra 50

4.8 Better load balancing . 52

4.8.1 Problems . 52

5 Sparse Linear Algebra 55

5.1 Cyclic Reduction for Structured Sparse Linear Systems 55

5.2 Sparse Direct Methods . 57

5.2.1 LU Decomposition and Gaussian Elimination 57

5.2.2 Parallel Factorization: the Multifrontal Algorithm 61

5.3 Basic Iterative Methods . 63

5.3.1 SuperLU-dist . 63

5.3.2 Jacobi Method . 64

5.3.3 Gauss-Seidel Method . 64

5.3.4 Splitting Matrix Method . 64

5.3.5 Weighted Splitting Matrix Method . 65

5.4 Red-Black Ordering for parallel Implementation . 65

5.5 Conjugate Gradient Method . 66

5.5.1 Parallel Conjugate Gradient . 66

5.6 Preconditioning . 67

5.7 Symmetric Supernodes . 69

5.7.1 Unsymmetric Supernodes . 69

5.7.2 The Column Elimination Tree . 70

5.7.3 Relaxed Supernodes . 72

5.7.4 Supernodal Numeric Factorization . 73

5.8 Efficient sparse matrix algorithms . 75

5.8.1 Scalable algorithms . 75

5.8.2 Cholesky factorization . 77

5.8.3 Distributed sparse Cholesky and the model problem 78

5.8.4 Parallel Block-Oriented Sparse Cholesky Factorization 79

5.9 Load balance with cyclic mapping . 79

5.9.1 Empirical Load Balance Results . 80

5.10 Heuristic Remapping . 82

5.11 Scheduling Local Computations . 83

Preface v

6 Parallel Machines 85

6.0.1 More on private versus shared addressing . 92

6.0.2 Programming Model . 93

6.0.3 Machine Topology . 93

6.0.4 Homogeneous and heterogeneous machines 94

6.0.5 Distributed Computing on the Internet and Akamai Network 95

7 FFT 97

7.1 FFT . 97

7.1.1 Data motion . 99

7.1.2 FFT on parallel machines . 100

7.1.3 Exercises . 101

7.2 Matrix Multiplication . 101

7.3 Basic Data Communication Operations . 102

8 Domain Decomposition 103

8.1 Geometric Issues . 105

8.1.1 Overlapping vs. Non-overlapping regions . 105

8.1.2 Geometric Discretization . 106

8.2 Algorithmic Issues . 108

8.2.1 Classical Iterations and their block equivalents 109

8.2.2 Schwarz approaches: additive vs. multiplicative 109

8.2.3 Substructuring Approaches . 112

8.2.4 Accellerants . 114

8.3 Theoretical Issues . 115

8.4 A Domain Decomposition Assignment: Decomposing MIT 116

9 Particle Methods 119

9.1 Reduce and Broadcast: A function viewpoint . 119

9.2 Particle Methods: An Application . 120

9.3 Outline . 120

9.4 What is N-Body Simulation? . 120

9.5 Examples . 121

9.6 The Basic Algorithm . 121

9.6.1 Finite Difference and the Euler Method . 123

9.7 Methods for Force Calculation . 124

9.7.1 Direct force calculation . 124

9.7.2 Potential based calculation . 124

9.7.3 Poisson Methods . 125

9.7.4 Hierarchical methods . 126

9.8 Quadtree (2D) and Octtree (3D) : Data Structures for Canonical Clustering 127

9.9 Barnes-Hut Method (1986) . 128

9.9.1 Approximating potentials . 130

9.10 Outline . 131

9.11 Introduction . 131

9.12 Multipole Algorithm: An Overview . 132

9.13 Multipole Expansion . 132

9.14 Taylor Expansion . 134

vi Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

9.15 Operation No.1 — SHIFT . 136
9.16 Operation No.2 — FLIP . 137
9.17 Application on Quad Tree . 139
9.18 Expansion from 2-D to 3-D . 140
9.19 Parallel Implementation . 141

10 Partitioning and Load Balancing 143
10.1 Motivation from the Parallel Sparse Matrix Vector Multiplication 143
10.2 Separators . 144
10.3 Spectral Partitioning – One way to slice a problem in half 144

10.3.1 Electrical Networks . 144
10.3.2 Laplacian of a Graph . 145
10.3.3 Spectral Partitioning . 146

10.4 Geometric Methods . 148
10.4.1 Geometric Graphs . 151
10.4.2 Geometric Partitioning: Algorithm and Geometric Modeling 154
10.4.3 Other Graphs with small separators . 157
10.4.4 Other Geometric Methods . 157
10.4.5 Partitioning Software . 158

10.5 Load-Balancing N-body Simulation for Non-uniform Particles 158
10.5.1 Hierarchical Methods of Non-uniformly Distributed Particles 158
10.5.2 The Communication Graph for N-Body Simulations 159
10.5.3 Near-Field Graphs . 163
10.5.4 N-body Communication Graphs . 164
10.5.5 Geometric Modeling of N-body Graphs . 164

11 Mesh Generation 167
11.1 How to Describe a Domain? . 168
11.2 Types of Meshes . 169
11.3 Refinement Methods . 170

11.3.1 Hierarchical Refinement . 170
11.3.2 Delaunay Triangulation . 171
11.3.3 Delaunay Refinement . 172

11.4 Working With Meshes . 173
11.5 Unsolved Problems . 173

12 Support Vector Machines and Singular Value Decomposition 175
12.1 Support Vector Machines . 175

12.1.1 Learning Models . 175
12.1.2 Developing SVMs . 176
12.1.3 Applications . 178

12.2 Singular Value Decomposition . 178

Lecture 1

Introduction

$Id: intro.tex,v 1.7 2004/02/16 21:31:14 drcheng Exp $

This book strives to study that elusive mix of theory and practice so important for understanding
modern high performance computing. We try to cover it all, from the engineering aspects of
computer science (parallel architectures, vendors, parallel languages, and tools) to the mathematical
understanding of numerical algorithms, and also certain aspects from theoretical computer science.

Any understanding of the subject should begin with a quick introduction to the current scene in
terms of machines, vendors, and performance trends. This sets a realistic expectation of maximal
performance and an idea of the monetary price. Then one must quickly introduce at least one,
though possibly two or three software approaches so that there is no waste in time in using a com-
puter. Then one has the luxury of reviewing interesting algorithms, understanding the intricacies of
how architecture influences performance and how this has changed historically, and also obtaining
detailed knowledge of software techniques.

1.1 The machines

We begin our introduction with a look at machines available for high performance computation.
We list four topics worthy of further exploration:

The top500 list: We encourage readers to explore the data on http://www.top500.org. Impor-
tant concepts are the types of machines currently on the top 500 and what benchmark is used. See
Section 1.8 for a case study on how this might be done.

The “grass-roots” machines: We encourage readers to find out what machines that one can
buy in the 10k–300k range. These are the sorts of machines that one might expect a small group
or team might have available. Such machines can be built as a do-it-yourself project or they can be
purchased as pre-built rack-mounted machines from a number of vendors. We created a web-site
at MIT http://beowulf.lcs.mit.edu/hpc.html to track the machines available at MIT.

Special interesting architectures: At the time of writing, the Japanese Earth Simulator and the
Virginia Tech Mac cluster are of special interest. It will not be long before they move into the next
category:

Interesting historical architectures and trends: To get an idea of history, consider the popular
1990 Michael Crichton novel Jurassic Park and the 1993 movie. The novel has the dinosaur
theme park controlled by a Cray vector supercomputer. The 1993 movie shows the CM-5 in the
background of the control center and even mentions the Thinking Machines Computer, but you
could easily miss it if you do not pay attention. The first decade of architecture is captured by the
Crichton novel: vector supercomputers. We recommend the Cray supercomputers as an interesting

1

2 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

examples. The second decade is characterized by MPPs: massively parallel supercomputers. We
recommend the CM2 and CM5 for their historical interest. The third decade, that of the cluster,
has seen a trend toward ease of availability, deployment and use. The first cluster dates back to
1994 consisting of 16 commodity computers connected by ethernet. Historically, the first beowulf
is worthy of study.

When studying architectures, issues of interconnect, processor type and speed, and other nitty
gritty issues arise. Sometimes low level software issues are also worthy of consideration when
studying hardware.

1.2 The software

The three software models that we introduce quickly are
MPI—The message passing interface. This is the defacto standard for parallel computing

though perhaps it is the lowest common denominator. We believe it was originally meant to be the
high performance low-level language that libraries and compilers would reduce to. In fact, because
it is portably and universally available it has become very much the language of parallel computing.

OpenMP—This less successful language (really language extension) has become popular for
so-called shared memory implementations. Those are implementations where the user need not
worry about the location of data.

Star-P—Our homegrown software that we hope will make parallel computing significantly
easier. It is based on a server which currently uses a MATLAB front end, and either OCTAVE or
MATLAB compute engines as well as library calls on the back end.

We also mention that there are any number of software libraries available for special purposes.
Mosix and OpenMosix are two technologies which allow for automatic load balancing between

nodes of a Linux cluster. The difference between the two is that OpenMosix is released under the
GNU Public License, while Mosix is proprietary software. Mosix and OpenMosix are installed as
kernel patches (so it is the somewhat daunting task of patching, recompiling, and installing the
patched Linux kernel). Once installed on a cluster, processes are automatically migrated from node
to node to achieve load balancing. This allows for an exceptionally simple way to run embarrassingly
parallel jobs, by simply backgrounding them with the ampersand (&) in the shell. For example:

#! /bin/sh

for i in 1 2 3 4 5 6 7 8 9 10

do ./monte-carlo \$i &

done

wait

echo "All processes done."

Although all ten monte-carlo processes (each executing with a different command-line parameter)
initially start on the same processor, the Mosix or OpenMosix system will automatically migrate
the processes to different nodes of the cluster by capturing the entire state of the running program,
sending it over the network, and restarting it from where it left off on a different node. Unfortu-
nately, interprocess communication is difficult. It can be done through the standard Unix methods,
for example, with sockets or via the file system.

The Condor Project, developed at the University of Wisconsin at Madison, is a batch queing
system with the an interesting feature.

[Condor can] effectively harness wasted CPU power from otherwise idle desktop work-
stations. For instance, Condor can be configured to only use desktop machines where

Preface 3

the keyboard and mouse are idle. Should Condor detect that a machine is no longer
available (such as a key press detected), in many circumstances Condor is able to trans-
parently produce a checkpoint and migrate a job to a different machine which would
otherwise be idle.1

Condor can run parallel computations across multiple Condor nodes using PVM or MPI, but (for
now) using MPI requires dedicated nodes that cannot be used as desktop machines.

1.3 The Reality of High Performance Computing

There are probably a number of important issues regarding the reality of parallel computing that
all too often is learned the hard way. You may not often find this in previously written textbooks.

Parallel computers may not give a speedup of p but you probably will be happy to be able to
solve a larger problem in a reasonable amount of time. In other words if your computation can
already be done on a single processor in a reasonable amount of time, you probably cannot do much
better.

If you are deplying a machine, worry first about heat, power, space, and noise, not speed and
performance.

1.4 Modern Algorithms

This book covers some of our favorite modern algorithms. One goal of high performance computing
is very well defined, that is, to find faster solutions to larger and more complex problems. This
area is a highly interdisciplinary area ranging from numerical analysis and algorithm design to
programming languages, computer architectures, software, and real applications. The participants
include engineers, computer scientists, applied mathematicians, and physicists, and many others.

We will concentrate on well-developed and more research oriented parallel algorithms in scien-
tific and engineering that have “traditionally” relied on high performance computing, particularly
parallel methods for differential equations, linear algebra, and simulations.

1.5 Compilers

[move to a software section?]
Most parallel languages are defined by adding parallel extensions to well-established sequential

languages, such as C and Fortran. Such extensions allow user to specify various levels of parallelism
in an application program, to define and manipulate parallel data structures, and to specify message
passing among parallel computing units.

Compilation has become more important for parallel systems. The purpose of a compiler is
not just to transform a parallel program in a high-level description into machine-level code. The
role of compiler optimization is more important. We will always have discussions about: Are we
developing methods and algorithms for a parallel machine or are we designing parallel machines for
algorithm and applications? Compilers are meant to bridge the gap between algorithm design and
machine architectures. Extension of compiler techniques to run time libraries will further reduce
users’ concern in parallel programming.

Software libraries are important tools in the use of computers. The purpose of libraries is
to enhance the productivity by providing preprogrammed functions and procedures. Software

1http://www.cs.wisc.edu/condor/description.html

4 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

libraries provide even higher level support to programmers than high-level languages. Parallel
scientific libraries embody expert knowledge of computer architectures, compilers, operating sys-
tems, numerical analysis, parallel data structures, and algorithms. They systematically choose a
set of basic functions and parallel data structures, and provide highly optimized routines for these
functions that carefully consider the issues of data allocation, data motion, load balancing, and
numerical stability. Hence scientists and engineers can spend more time and be more focused on
developing efficient computational methods for their problems. Another goal of scientific libraries
is to make parallel programs portable from one parallel machine platform to another. Because of
the lack, until very recently, of non-proprietary parallel programming standards, the development
of portable parallel libraries has lagged far behind the need for them. There is good evidence now,
however, that scientific libraries will be made more powerful in the future and will include more
functions for applications to provide a better interface to real applications.

Due to the generality of scientific libraries, their functions may be more complex than needed
for a particular application. Hence, they are less efficient than the best codes that take advantage of
the special structure of the problem. So a programmer needs to learn how to use scientific libraries.
A pragmatic suggestion is to use functions available in the scientific library to develop the first
prototype and then to iteratively find the bottleneck in the program and improve the efficiency.

1.6 Scientific Algorithms

The multidisciplinary aspect of scientific computing is clearly visible in algorithms for scientific
problems. A scientific algorithm can be either sequential or parallel. In general, algorithms in
scientific software can be classified as graph algorithms, geometric algorithms, and numerical algo-
rithms, and most scientific software calls on algorithms of all three types. Scientific software also
makes use of advanced data structures and up-to-date user interfaces and graphics.

1.7 History, State-of-Art, and Perspective

The supercomputer industry started when Cray Research developed the vector-processor-powered
Cray-1, in 1975. The massively parallel processing (MPP) industry emerged with the introduction
of the CM-2 by Thinking Machines in 1985. Finally, 1994 brought the first Beowulf cluster, or “com-
midity supercomputing” (parallel computers built out of off-the-shelf components by independent
vendors or do-it-your-selfers).

1.7.1 Things that are not traditional supercomputers

There have been a few successful distributed computing projects using volunteers across the inter-
net. These projects represent the beginning attempts at “grid” computing.

• Seti@home uses thousands of Internet-connected computers to analyze radio telescope data
in a search for extraterrestrial intelligence. The principal computation is FFT of the radio
signals, and approximately 500,000 computers contribute toward a total computing effort of
about 60 teraflops.

• distributed.net works on RSA Laboratories’ RC5 cipher decryption contest and also
searches for optimal Golumb rulers.

• mersenne.org searches for Mersenne primes, primes of the form 2p − 1.

Preface 5

• chessbrain.net is a distributed chess computer. On January 30, 2004, a total of 2,070
machines participated in a match against a Danish grandmaster. The game resulted in a
draw by repetition.

Whereas the above examples of benevolent or harmless distributed computing, there are also
other sorts of distributed computing which are frowned upon, either by the entertainment industry
in the first example below, or universally in the latter two.

• Peer-to-peer file-sharing (the original Napster, followed by Gnutella, KaZaA, Freenet, and the
like) can viewed as a large distributed supercomputer, although the resource being parallelized
is storage rather than processing. KaZaA itself is notable because the client software contains
an infamous hook (called Altnet) which allows a KaZaA corporate partner (Brilliant Digital
Entertainment) to load and run arbritrary code on the client computer. Brilliant Digital
has been quoted as saying they plan to use Altnet as “the next advancement in distributed
bandwidth, storage and computing.”2 Altnet has so far only been used to distribute ads to
KaZaA users.

• Distributed Denial of Service (DDoS) attacks harness thousands of machines (typically com-
promised through a security vulnerability) to attack an Internet host with so much traffic
that it becomes too slow or otherwise unusable by legitimate users.

• Spam e-mailers have also increasingly turned to hundreds or thousands compromised machines
to act as remailers, as a response to the practice of “blacklisting” machines thought to be
spam mailers. The disturbing mode of attack is often a e-mail message containing a trojan
attachment, which when executed opens a backdoor that the spammer can use to send more
spam.

Although the class will not focus on these non-traditional supercomputers, the issues they have to
deal with (communication between processors, load balancing, dealing with unreliable nodes) are
similar to the issues that will be addressed in this class.

1.8 Analyzing the top500 List Using Excel

The following is a brief tutorial on analyzing data from the top500 website using Excel. Note that
while the details provided by the top500 website will change from year to year, the ability for you
to analyze this data should always be there. If the listed .xml file no longer exists, try searching
the website yourself for the most current .xml file.

1.8.1 Importing the XML file

Open up Microsoft Office Excel 2003 on Windows XP. Click on the File menubar and then Open
(or type Ctrl-O). As shown in Figure 1.1, for the the File name: text area, type in:

http://www.top500.org/lists/2003/11/top500.200311.xml

Click Open. A small window pops up asking how you would like to open the file. Leave the
default as is and click OK (Figure 1.2).

6 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 1.1: Open dialog

Figure 1.2: Opening the XML file

Figure 1.3: Loaded data

Preface 7

Figure 1.4: Filtering available for each column

1.8.2 Filtering

Click OK again. Something as in Figure 1.3 should show up.

If you don’t see the bolded column titles with the arrows next to them, go to the menubar
and select Data → Filter → Autofilter (make sure it is checked). Type Ctrl-A to highlight all the
entries. Go to the menubar and select Format → Column → Width. You can put in any width
you’d like, but 10 would work.

You can now filter the data in numerous ways. For example, if you want to find out all SGI
installations in the US, you can click on the arrow in column K (country) and select United States.
Then, click on the arrow in column F (manufacturer) and select SGI. The entire data set is now
sorted to those select machines (Figure 1.5).

If you continue to click on other arrows, the selection will become more and more filtered. If
you would like to start over, go to the menubar and select Data → Filter → Show All. Assuming
that you’ve started over with all the data, we can try to see all machines in both Singapore and
Malaysia. Click on the arrow in column K (country) again and select (Custom...). You should see
something as in Figure 1.6.

On the top right side, pull down the arrow and select Singapore. On the lower left, pull down
the arrow and select equals. On the lower right, pull down the arrow and select Malaysia (Figure
1.6.

Now click OK. You should see a blank filtered list because there are no machines that are in
both Singapore and Malaysia (Figure 1.7).

If you want to find out all machines in Singapore or India, you have to start off with all the
data again. You perform the same thing as before except that in the Custom AutoFilter screen,
you should click on the Or toggle button. You should also type in India instead of Malaysia (Figure

2Brilliant Digital Entertainment’s Annual Report (Form 10KSB), Filed with SEC April 1, 2002.

8 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 1.5: All SGI installations

Figure 1.6: Custom filter

Preface 9

Figure 1.7: Machines in Singapore and Malaysia (none)

1.8).
Click OK and you should see something as in Figure 1.9.

1.8.3 Pivot Tables

Now let’s try experimenting with a new feature called pivot tables. First, go to the menubar and
click on Data → Filter → Show All to bring back all the entries. Type Ctrl-A to select all the
entries. Go to the menubar and click on Data → PivotTable and PivotChart Report... Figure 1.10
shows the 3 wizard screens that you’ll see. You can click Finish in the first screen unless you want
to specify something different.

You get something as in Figure 1.11.
Let’s try to find out the number of machines in each country. Scroll down the PivotTable Field

List, find ns1:country, and use your mouse to drag it to where it says “Drop Row Fields Here”.

Figure 1.8: Example filter: Singapore or India

10 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 1.9: Machines in Singapore or India

Figure 1.10: Pivot Table wizard

Preface 11

Figure 1.11: Empty Pivot Table

Now scroll down the PivotTable Field List again, find ns1:computer, and use your mouse to drag
it to where it says “Drop Data Items Here” (Figure 1.12).

Notice that at the top left of the table it says “Count of ns1:computer”. This means that it is
counting up the number of machines for each individual country. Now let’s fine the highest rank of
each machine. Click on the gray ns1:country column heading and drag it back to the PivotTable
Field List. Now from the PivotTable Field List, drag ns1:computer to the column where the country
list was before. Click on the gray Count of ns1:computer column heading and drag it back to the
PivotTable Field List. From the same list, drag ns1:rank to where the ns1:computer information
was before (it says “Drop Data Items Here”). The upper left column heading should now be: Sum
of ns1: rank. Double click on it and the resulting pop up is shown in Figure 1.13.

To find the highest rank of each machine, we need the data to be sorted by Min. Click on Min
and click OK (Figure 1.14).

The data now shows the highest rank for each machine. Let’s find the number of machines
worldwide for each vendor. Following the same procedures as before, we replace the Row Fields
and Data Items with ns1:manufacturer and ns1:computer, respectively. We see that the upper left
column heading says “Count of ns1:computer”, so we now it is finding the sum of the machines for
each vendor. The screen should look like Figure 1.15.

Now let’s find the minimum rank for each vendor. By now we should all be experts at this!
The tricky part here is that we actually want the Max of the ranks. The screen you should get is
shown in Figure 1.16.

Note that it is also possible to create 3D pivot tables. Start out with a blank slate by dragging
everything back to the Pivot Table Field List. Then, from that list, drag ns1:country to where
it says “Drop Row Fields Here”. Drag ns1:manufacturer to where it says “Drop Column Fields
Here”. Now click on the arrow under the ns1:country title, click on Show All (which releases on the
checks), Australia, Austria, Belarus, and Belgium. Click on the arrow under the ns1:manufacturer

12 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 1.12: Number of machines in each country

Figure 1.13: Possible functions on the rank

Preface 13

Figure 1.14: Minimum ranked machine from each country

Figure 1.15: Count of machines for each vendor

14 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 1.16: Minimum ranked machine from each vendor

title, click on Show All, Dell, Hewlett-Packward, and IBM. Drag ns1:rank from the Pivot Table
Field List to where it says “Drop Data Items Here”. Double-click on the Sum of ns1:rank and
select Count instead of Sum. Finally, drag ns1:year to where it says “Drop Page Fields Here”. You
have successfully completed a 3D pivot table that looks like Figure 1.17.

As you can imagine, there are infinite possibilities for auto-filter and pivot table combinations.
Have fun with it!

1.9 Parallel Computing: An Example

Here is an example of a problem that one can easily imagine being performed in parallel:

A rudimentary parallel problem: Compute

x1 + x2 + . . . + xP ,

where xi is a floating point number and for purposes of exposition, let us assume P is
a power of 2.

Obviously, the sum can be computed in log P (base 2 is understood) steps, simply by adding
neighboring pairs recursively. (The algorithm has also been called pairwise summation and cascade
summation). The data flow in this computation can be thought of as a binary tree.

(Illustrate on tree.)
Nodes represent values, either input or the result of a computation. Edges communicate values

from their definition to their uses.
This is an example of what is often known as a reduce operation. We can replace the addition

operation with any associative operator to generalize. (Actually, floating point addition is not

Preface 15

Figure 1.17: 3D pivot table

associative, leading to interesting numerical questions about the best order in which to add numbers.
This is studied by Higham [49, See p. 788].)

There are so many questions though. How would you write a program to do this on P processors?
Is it likely that you would want to have such a program on P processors? How would the data (the
xi) get to these processors in the first place? Would they be stored there or result from some other
computation? It is far more likely that you would have 10000P numbers on P processors to add.

A correct parallel program is often not an efficient parallel program. A flaw in a parallel program
that causes it to get the right answer slowly is known as a performance bug. Many beginners will
write a working parallel program, obtain poor performance, and prematurely conclude that either
parallelism is a bad idea, or that it is the machine that they are using which is slow.

What are the sources of performance bugs? We illustrate some of them with this little, admit-
tedly contrived example. For this example, imagine four processors, numbered zero through three,
each with its own private memory, and able to send and receive message to/from the others. As a
simple approximation, assume that the time consumed by a message of size n words is A + Bn.

Three Bad Parallel Algorithms for Computing 1 + 2 + 3 + · · · + 106 on Four
Processors and generalization

1. Load imbalance. One processor has too much to do, and the others sit around
waiting for it. For our problem, we could eliminate all the communication by
having processor zero do all the work; but we won’t see any parallel speedup with
this method!

2. Excessive communication.

Processor zero has all the data which is divided into four equally sized parts each
with a quarter of a million numbers. It ships three of the four parts to each of

16 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

the other processors for proper load balancing. The results are added up on each
processor, and then processor 0 adds the final four numbers together.

True, there is a tiny bit of load imbalance here, since processor zero does those few
last additions. But that is nothing compared with the cost it incurs in shipping out
the data to the other processors. In order to get that data out onto the network,
it incurs a large cost that does not drop with the addition of more processors. (In
fact, since the number of messages it sends grows like the number of processors,
the time spent in the initial communication will actually increase.)

3. A sequential bottleneck. Let’s assume the data are initially spread out among
the processors; processor zero has the numbers 1 through 250,000, etc. Assume
that the owner of i will add it to the running total. So there will be no load
imbalance. But assume, further, that we are constrained to add the numbers
in their original order! (Sounds silly when adding, but other algorithms require
exactly such a constraint.) Thus, processor one may not begin its work until it
receives the sum 0 + 1 + · · · + 250, 000 from processor zero!

We are thus requiring a sequential computation: our binary summation tree is
maximally unbalanced, and has height 106. It is always useful to know the critical
path—the length of the longest path in the dataflow graph—of the computation
being parallelized. If it is excessive, change the algorithm!

Some problems look sequential such as Fibonacci: Fk+1 = Fk + Fk−1, but looks
can be deceiving. Parallel prefix will be introduced later, which can be used to
parallelize the Fibonacci computation.

1.10 Exercises

1. Compute the sum of 1 through 1, 000, 000 using HPF. This amounts to a “hello world” pro-
gram on whichever machine you are using. We are not currently aware of any free distributions
of HPF for workstations, so your instructor will have to suggest a computer to use.

2. Download MPI to your machine and compute the sum of 1 through 1, 000, 000 us-
ing C or Fortran with MPI. A number of MPI implementations may be found at
http://www.mcs.anl.gov/Projects/mpi/implementations.html The easy to follow ten
step quick start on http://www.mcs.anl.gov/mpi/mpiinstall/node1.html#Node1 worked
very easily on the MIT mathematics department’s SUN network.

3. In HPF, generate 1, 000, 000 real random numbers and sort them. (Use RANDOM_NUMBER and
GRADE_UP.

4. (Extra Credit) Do the same in C or Fortran with MPI.

5. Set up the excessive communication situation described as the second bad parallel algorithm.
Place the numbers 1 through one million in a vector on one processor. Using four processors
see how quickly you can get the sum of the numbers 1 through one million.

Lecture 2

MPI, OpenMP, MATLAB*P

A parallel language must provide mechanisms for implementing parallel algorithms, i.e., to spec-
ify various levels of parallelism and define parallel data structures for distributing and sharing
information among processors.

Most current parallel languages add parallel constructs for standard sequential languages. Dif-
ferent parallel languages provide different basic constructs. The choice largely depends on the
parallel computing model the language means to support.

There are at least three basic parallel computation models other than vector and pipeline model:
data parallel, message passing, and shared memory task parallel.

2.1 Programming style

Data parallel vs. message passing . Explicit communication can be somewhat hidden if one wants
to program in a data parallel style; it’s something like SIMD: you specify a single action to execute
on all processors. Example: if A, B and C are matrices, you can write C=A+B and let the compiler do
the hard work of accessing remote memory locations, partition the matrix among the processors,
etc.

By contrast, explicit message passing gives the programmer careful control over the communi-
cation, but programming requires a lot of knowledge and is much more difficult (as you probably
understood from the previous section).

There are uncountable other alternatives, still academic at this point (in the sense that no
commercial machine comes with them bundled). A great deal of research has been conducted
on multithreading; the idea is that the programmer expresses the computation graph in some
appropriate language and the machine executes the graph, and potentially independent nodes of
the graph can be executed in parallel. Example in Cilk (multithreaded C, developed at MIT by
Charles Leiserson and his students):

thread int fib(int n)

{

if (n<2)

return n;

else {

cont int x, y;

x = spawn fib (n-2);

y = spawn fib (n-1);

17

18 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

sync;

return x+y;

}

}

Actually Cilk is a little bit different right now, but this is the way the program will look like when
you read these notes. The whole point is that the two computations of fib(n-1) and fib(n-2) can
be executed in parallel. As you might have expected, there are dozens of multithreaded languages
(functional, imperative, declarative) and implementation techniques; in some implementations the
thread size is a single-instruction long, and special processors execute this kind of programs. Ask
Arvind at LCS for details.

Writing a good HPF compiler is difficult and not every manufacturer provides one; actually for
some time TMC machines were the only machines available with it. The first HPF compiler for
the Intel Paragon dates December 1994.

Why SIMD is not necessarily the right model for data parallel programming. Consider the
following Fortran fragment, where x and y are vectors:

where (x > 0)

y = x + 2

elsewhere

y = -x + 5

endwhere

A SIMD machine might execute both cases, and discard one of the results; it does twice the
needed work (see why? there is a single flow of instructions). This is how the CM-2 operated.

On the other hand, an HPF compiler for a SIMD machine can take advantage of the fact that
there will be many more elements of x than processors. It can execute the where branch until there
are no positive elements of x that haven’t been seen, then it can execute the elsewhere branch
until all other elements of x are covered. It can do this provided the machine has the ability to
generate independent memory addresses on every processor.

Moral: even if the programming model is that there is one processor per data element, the
programmer (and the compiler writer) must be aware that it’s not true.

2.2 Message Passing

In the SISD, SIMD, and MIMD computer taxonomy, SISD machines are conventional uniprocessors,
SIMD are single instruction stream machines that operate in parallel on ensembles of data, like
arrays or vectors, and MIMD machines have multiple active threads of control (processes) that
can operate on multiple data in parallel. How do these threads share data and how do they
synchronize? For example, suppose two processes have a producer/consumer relationship. The
producer generates a sequence of data items that are passed to the consumer, which processes
them further. How does the producer deliver the data to the consumer?

If they share a common memory, then they agree on a location to be used for the transfer. In
addition, they have a mechanism that allows the consumer to know when that location is full, i.e.
it has a valid datum placed there for it by the producer, and a mechanism to read that location and
change its state to empty. A full/empty bit is often associated with the location for this purpose.
The hardware feature that is often used to do this is a “test-and-set” instruction that tests a bit
in memory and simultaneously sets it to one. The producer has the obvious dual mechanisms.

Preface 19

Many highly parallel machines have been, and still are, just collections of independent computers
on some sort of a network. Such machines can be made to have just about any data sharing and
synchronization mechanism; it just depends on what software is provided by the operating system,
the compilers, and the runtime libraries. One possibility, the one used by the first of these machines
(The Caltech Cosmic Cube, from around 1984) is message passing. (So it’s misleading to call these
“message passing machines”; they are really multicomputers with message passing library software.)

From the point of view of the application, these computers can send a message to another
computer and can receive such messages off the network. Thus, a process cannot touch any data
other than what is in its own, private memory. The way it communicates is to send messages to
and receive messages from other processes. Synchronization happens as part of the process, by
virtue of the fact that both the sending and receiving process have to make a call to the system in
order to move the data: the sender won’t call send until its data is already in the send buffer, and
the receiver calls receive when its receive buffer is empty and it needs more data to proceed.

Message passing systems have been around since the Cosmic Cube, about ten years. In that
time, there has been a lot of evolution, improved efficiency, better software engineering, improved
functionality. Many variants were developed by users, computer vendors, and independent software
companies. Finally, in 1993, a standardization effort was attempted, and the result is the Message
Passing Interface (MPI) standard. MPI is flexible and general, has good implementations on all
the machines one is likely to use, and is almost certain to be around for quite some time. We’ll
use MPI in the course. On one hand, MPI is complicated considering that there are more than 150
functions and the number is still growing. But on the other hand, MPI is simple because there are
only six basic functions: MPI Init, MPI Finalize, MPI Comm rank, MPI Comm size, MPI Send and
MPI Recv.

In print, the best MPI reference is the handbook Using MPI, by William Gropp, Ewing Lusk,
and Anthony Skjellum, published by MIT Press ISBN 0-262-57104-8.

The standard is on the World WIde Web. The URL is
http://www.mcs.anl.gov/mpi/mpi-report/mpi-report.html. An updated version is at
ftp://ftp.mcs.anl.gov/pub/mpi/mpi-1.jun95/mpi-report.ps

2.2.1 Who am I?

On the SP-2 and other multicomputers, one usually writes one program which runs on all the
processors. In order to differentiate its behavior, (like producer and consumer) a process usually
first finds out at runtime its rank within its process group, then branches accordingly. The calls

MPI_Comm_size(MPI_Comm comm, int *size)

sets size to the number of processes in the group specified by comm and the call

MPI_Comm_rank(MPI_Comm comm, int *rank)

sets rank to the rank of the calling process within the group (from 0 up to n − 1 where n is the
size of the group). Usually, the first thing a program does is to call these using MPI COMM WORLD as
the communicator, in order to find out the answer to the big questions, “Who am I?” and “How
many other ‘I’s are there?”.

Okay, I lied. That’s the second thing a program does. Before it can do anything else, it has to
make the call

MPI_Init(int *argc, char ***argv)

20 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

where argc and argv should be pointers to the arguments provided by UNIX to main(). While
we’re at it, let’s not forget that one’s code needs to start with

#include "mpi.h"

The last thing the MPI code does should be

MPI_Finalize()

No arguments.

Here’s an MPI multi-process “Hello World”:

#include <stdio.h>

#include "mpi.h"

main(int argc, char** argv) {

int i, myrank, nprocs;

double a = 0, b = 1.1, c = 0.90;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

printf("Hello world! This is process %d out of %d\n",myrank, nprocs);

if (myrank == 0) printf("Some processes are more equal than others.");

MPI_Finalize();

} /* main */

which is compiled and executed on the SP-2 at Ames by

babbage1% mpicc -O3 example.c

babbage1% a.out -procs 2

and produces (on the standard output)

0:Hello world! This is process 0 out of 2

1:Hello world! This is process 1 out of 2

0:Some processes are more equal than others.

Another important thing to know about is the MPI wall clock timer:

double MPI_Wtime()

which returns the time in seconds from some unspecified point in the past.

2.2.2 Sending and receiving

In order to get started, let’s look at the two most important MPI functions, MPI Send and MPI Recv.

The call

MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

Preface 21

sends count items of data of type datatype starting at the location buf. In all message passing
systems, the processes have identifiers of some kind. In MPI, the process is identified by its rank,
an integer. The data is sent to the processes whose rank is dest. Possible values for datatype

are MPI INT, MPI DOUBLE, MPI CHAR etc. tag is an integer used by the programmer to allow the
receiver to select from among several arriving messages in the MPI Recv. Finally, comm is something
called a communicator, which is essentially a subset of the processes. Ordinarily, message passing
occurs within a single subset. The subset MPI COMM WORLD consists of all the processes in a single
parallel job, and is predefined.

A receive call matching the send above is

MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Status *status)

buf is where the data is placed once it arrives. count, an input argument, is the size of the buffer;
the message is truncated if it is longer than the buffer. Of course, the receive has to be executed by
the correct destination process, as specified in the dest part of the send, for it to match. source

must be the rank of the sending process. The communicator and the tag must match. So must the
datatype.

The purpose of the datatype field is to allow MPI to be used with heterogeneous hardware.
A process running on a little-endian machine may communicate integers to another process on a
big-endian machine; MPI converts them automatically. The same holds for different floating point
formats. Type conversion, however, is not supported: an integer must be sent to an integer, a
double to a double, etc.

Suppose the producer and consumer transact business in two word integer packets. The pro-
ducer is process 0 and the consumer is process 1. Then the send would look like this:

int outgoing[2];

MPI_Send(outgoing, 2, MPI_INT, 1 100, MPI_COMM_WORLD)

and the receive like this:

MPI_Status stat;

int incoming[2];

MPI_Recv(incoming, 2, MPI_INT, 0 100, MPI_COMM_WORLD, &stat)

What if one wants a process to which several other processes can send messages, with service
provided on a first-arrived, first-served basis? For this purpose, we don’t want to specify the source
in our receive, and we use the value MPI ANY SOURCE instead of an explicit source. The same is
true if we want to ignore the tag: use MPI ANY TAG. The basic purpose of the status argument,
which is an output argument, is to find out what the tag and source of such a received message
are. status.MPI TAG and status.MPI SOURCE are components of the struct status of type int
that contain this information after the MPI Recv function returns.

This form of send and receive are “blocking”, which is a technical term that has the following
meaning. for the send, it means that buf has been read by the system and the data has been
moved out as soon as the send returns. The sending process can write into it without corrupting
the message that was sent. For the receive, it means that buf has been filled with data on return.
(A call to MPI Recv with no corresponding call to MPI Send occurring elsewhere is a very good and
often used method for hanging a message passing application.)

MPI implementations may use buffering to accomplish this. When send is called, the data are
copied into a system buffer and control returns to the caller. A separate system process (perhaps

22 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

using communication hardware) completes the job of sending the data to the receiver. Another
implementation is to wait until a corresponding receive is posted by the destination process, then
transfer the data to the receive buffer, and finally return control to the caller. MPI provides
two variants of send, MPI Bsend and MPI Ssend that force the buffered or the rendezvous imple-
mentation. Lastly, there is a version of send that works in “ready” mode. For such a send, the
corresponding receive must have been executed previously, otherwise an error occurs. On some
systems, this may be faster than the blocking versions of send. All four versions of send have the
same calling sequence.
NOTE: MPI allows a process to send itself data. Don’t try it. On the SP-2, if the message is big
enough, it doesn’t work. Here’s why. Consider this code:

if (myrank == 0)

for(dest = 0; dest < size; dest++)

MPI_Send(sendbuf+dest*count, count, MPI_INT, dest, tag, MPI_COMM_WORLD);

MPI_Recv(recvbuf, count, MPI_INT, 0, tag, MPI_COMM_WORLD, &stat);

The programmer is attempting to send data from process zero to all processes, including process
zero; 4 · count bytes of it. If the system has enough buffer space for the outgoing messages, this
succeeds, but if it doesn’t, then the send blocks until the receive is executed. But since control
does not return from the blocking send to process zero, the receive never does execute. If the
programmer uses buffered send, then this deadlock cannot occur. An error will occur if the system
runs out of buffer space, however:

if (myrank == 0)

for(dest = 0; dest < size; dest++)

MPI_Bsend(sendbuf+dest*count, count, MPI_INT, dest, tag, MPI_COMM_WORLD);

MPI_Recv(recvbuf, count, MPI_INT, 0, tag, MPI_COMM_WORLD, &stat);

2.2.3 Tags and communicators

Tags are used to keep messages straight. An example will illustrate how they are used. Suppose
each process in a group has one integer and one real value, and we wish to find, on process zero,
the sum of the integers and the sum of the reals. Lets write this:

itag = 100;

MPI_Send(&intvar, 1, MPI_INT, 0, itag, MPI_COMM_WORLD);

ftag = 101;

MPI_Send(&floatvar, 1, MPI_FLOAT, 0, ftag, MPI_COMM_WORLD);

/**** Sends are done. Receive on process zero ****/

if (myrank == 0) {

intsum = 0;

for (kount = 0; kount < nprocs; kount++) {

MPI_Recv(&intrecv, 1, MPI_INT, MPI_ANY_SOURCE, itag, MPI_COMM_WORLD, &stat);

intsum += intrecv;

}

fltsum = 0;

for (kount = 0; kount < nprocs; kount++) {

MPI_Recv(&fltrecv, 1, MPI_FLOAT, MPI_ANY_SOURCE, ftag, MPI_COMM_WORLD, &stat);

fltsum += fltrecv;

}

Preface 23

}

It looks simple, but there are a lot of subtleties here! First, note the use of MPI ANY SOURCE in
the receives. We’re happy to receive the data in the order it arrives. Second, note that we use two
different tag values to distinguish between the int and the float data. Why isn’t the MPI TYPE filed
enough? Because MPI does not include the type as part of the message “envelope”. The envelope
consists of the source, destination, tag, and communicator, and these must match in a send-receive
pair. Now the two messages sent to process zero from some other process are guaranteed to arrive
in the order they were sent, namely the integer message first. But that does not mean that all of
the integer message precede all of the float messages! So the tag is needed to distinguish them.

This solution creates a problem. Our code, as it is now written, sends off a lot of messages
with tags 100 and 101, then does the receives (at process zero). Suppose we called a library routine
written by another user before we did the receives. What if that library code uses the same message
tags? Chaos results. We’ve “polluted” the tag space. Note, by the way, that synchronizing the
processes before calling the library code does not solve this problem.

MPI provides communicators as a way to prevent this problem. The communicator is a part
of the message envelope. So we need to change communicators while in the library routine. To do
this, we use MPI Comm dup, which makes a new communicator with the same processes in the same
order as an existing communicator. For example

void safe_library_routine(MPI_Comm oldcomm)

{

MPI_Comm mycomm;

MPI_Comm_dup(oldcomm, &mycomm);

<library code using mycomm for communication>

MPI_Comm_free(&mycomm);

}

The messages sent and received inside the library code cannot interfere with those send outside.

2.2.4 Performance, and tolerance

Try this exercise. See how long a message of length n bytes takes between the call time the send
calls send and the time the receiver returns from receive. Do an experiment and vary n. Also vary
the rank of the receiver for a fixed sender. Does the model

Elapsed Time(n, r) = α + βn

work? (r is the receiver, and according to this model, the cost is receiver independent.)
In such a model, the latency for a message is α seconds, and the bandwidth is 1/β bytes/second.

Other models try to split α into two components. The first is the time actually spent by the sending
processor and the receiving processor on behalf of a message. (Some of the per-byte cost is also
attributed to the processors.) This is called the overhead. The remaining component of latency
is the delay as the message actually travels through the machines interconnect network. It is
ordinarily much smaller than the overhead on modern multicomputers (ones, rather than tens of
microseconds).

A lot has been made about the possibility of improving performance by “tolerating” communi-
cation latency. To do so, one finds other work for the processor to do while it waits for a message
to arrive. The simplest thing is for the programmer to do this explicitly. For this purpose, there
are “nonblocking” versions of send and receive in MPI and other dialects.

24 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Nonblocking send and receive work this way. A nonblock send start call initiates a send
but returns before the data are out of the send buffer. A separate call to send complete then
blocks the sending process, returning only when the data are out of the buffer. The same two-
phase protocol is used for nonblocking receive. The receive start call returns right away, and the
receive complete call returns only when the data are in the buffer.

The simplest mechanism is to match a nonblocking receive with a blocking send. To illustrate,
we perform the communication operation of the previous section using nonblocking receive.

MPI_Request request;

MPI_IRecv(recvbuf, count, MPI_INT, 0, tag, MPI_COMM_WORLD, &request);

if (myrank == 0)

for(dest = 0; dest < size; dest++)

MPI_Send(sendbuf+dest*count, count, MPI_INT, dest, tag, MPI_COMM_WORLD);

MPI_Wait(&request, &stat);

MPI Wait blocks until the nonblocking operation identified by the handle request completes. This
code is correct regardless of the availability of buffers. The sends will either buffer or block until
the corresponding receive start is executed, and all of these will be.

Before embarking on an effort to improve performance this way, one should first consider what
the payoff will be. In general, the best that can be achieved is a two-fold improvement. Often, for
large problems, it’s the bandwidth (the βn term) that dominates, and latency tolerance doesn’t
help with this. Rearrangement of the data and computation to avoid some of the communication
altogether is required to reduce the bandwidth component of communication time.

2.2.5 Who’s got the floor?

We usually think of send and receive as the basic message passing mechanism. But they’re not
the whole story by a long shot. If we wrote codes that had genuinely different, independent,
asynchronous processes that interacted in response to random events, then send and receive would
be used to do all the work. Now consider computing a dot product of two identically distributed
vectors. Each processor does a local dot product of its pieces, producing one scalar value per
processor. Then we need to add them together and, probably, broadcast the result. Can we do this
with send and receive? Sure. Do we want to? No. No because it would be a pain in the neck to write
and because the MPI system implementor may be able to provide the two necessary, and generally
useful collective operations (sum, and broadcast) for us in a more efficient implementation.

MPI has lots of these “collective communication” functions. (And like the sum operation, they
often do computation as part of the communication.)

Here’s a sum operation, on doubles. The variable sum on process root gets the sum of the
variables x on all the processes.

double x, sum;

int root, count = 1;

MPI_Reduce(&x, &sum, count, MPI_DOUBLE, MPI_SUM, root, MPI_COMM_WORLD);

The fifth argument specifies the operation; other possibilities are MPI MAX, MPI LAND, MPI BOR,

... which specify maximum, logical AND, and bitwise OR, for example.
The semantics of the collective communication calls are subtle to this extent: nothing happens

except that a process stops when it reaches such a call, until all processes in the specified group
reach it. Then the reduction operation occurs and the result is placed in the sum variable on the
root processor. Thus, reductions provide what is called a barrier synchronization.

Preface 25

There are quite a few collective communication operations provided by MPI, all of them useful
and important. We will use several in the assignment. To mention a few, MPI Bcast broadcasts
a vector from one process to the rest of its process group; MPI Scatter sends different data from
one process to each process in its a group; MPI Gather is the inverse of a scatter: one process
receives and concatenates data from all processes in its group; MPI Allgather is like a gather
followed by a broadcast: all processes receive the concatenation of data that are initially distributed
among them; MPI Reduce scatter is like reduce followed by scatter: the result of the reduction
ends up distributed among the process group. Finally, MPI Alltoall implements a very general
communication in which each process has a separate message to send to each member of the process
group.

Often the process group in a collective communication is some subset of all the processors. In
a typical situation, we may view the processes as forming a grid, let’s say a 2d grid, for example.
We may want to do a reduction operation within rows of the process grid. For this purpose, we
can use MPI Reduce, with a separate communicator for each row.

To make this work, each process first computes its coordinates in the process grid. MPI makes
this easy, with

int nprocs, myproc, procdims[2], myproc_row, myproc_col;

MPI_Dims_create(nprocs, 2, procdims);

myproc_row = myrank / procdims[1];

myproc_col = myrank % procdims[1];

Next. one creates new communicators, one for each process row and one for each process column.
The calls

MPI_Comm my_prow, my_pcol;

MPI_Comm_split(MPI_COMM_WORLD, myproc_row, 0, &my_prow);

MPI_Comm_split(MPI_COMM_WORLD, myproc_row, 0, &my_prow);

create them and

MPI_Comm_free(&my_prow);

MPI_Comm_free(&my_pcol);

free them. The reduce-in-rows call is then

MPI_Reduce(&x, &sum, count, MPI_DOUBLE, MPI_SUM, 0, my_prow);

which leaves the sum of the vectors x in the vector sum in the process whose rank in the group is
zero: this will be the first process in the row. The general form is

MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm newcomm)

As in the example above, the group associated with comm is split into disjoint subgroups, one
for every different value of color; the communicator for the subgroup that this process belongs to
is returned in newcomm. The argument key determines the rank of this process within newcomm; the
members are ranked according to their value of key, with ties broken using the rank in comm.

26 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

2.3 More on Message Passing

2.3.1 Nomenclature

• Performance:

Latency: the time it takes to send a zero length message (overhead)
Bandwidth: the rate at which data can be sent

• Synchrony:

Synchronous: sending function returns when a matching receiving operation has been initiated
at the destination.
Blocking: sending function returns when the message has been safely copied.
Non-blocking (asynchronous): sending function returns immediately. Message buffer must
not be changed until it is safe to do so

• Miscellaneous:

Interrupts: if enabled, the arrival of a message interrupts the receiving processor
Polling: the act of checking the occurrence of an event
Handlers: code written to execute when an interrupt occurs
Critical sections: sections of the code which cannot be interrupted safely
Scheduling: the process of determining which code to run at a given time
Priority: a relative statement about the ranking of an object according to some metric

2.3.2 The Development of Message Passing

• Early Multicomputers:
UNIVAC
Goodyear MPP (SIMD.)
Denelcor HEP (Shared memory)

• The Internet and Berkeley Unix (High latency, low bandwidth)

Support for communications between computers is part of the operating
system (sockets, ports,remote devices)
Client/server applications appear

• Parallel Machines (lowest latency,high bandwidth - dedicated networks)

Ncube
Intel (Hypercubes, Paragon)
Meiko (CS1,CS2)
TMC (CM-5)

• Workstation clusters (lower latency, high bandwidth, popular networks)

IBM (SP1,2) - optional proprietary network

• Software (libraries):

CrOS, CUBIX, NX, Express
Vertex
EUI/MPL (adjusts to the machine operating system)
CMMD

Preface 27

PVM (supports heterogeneous machines; dynamic machine configuration)
PARMACS, P4, Chamaleon
MPI (analgum of everything above and adjusts to the operating system)

• Systems:

Mach
Linda (object-based system)

2.3.3 Machine Characteristics

• Nodes:

CPU, local memory,perhaps local I/O

• Networks:

Topology: Hypercube,Mesh,Fat-Tree, other
Routing: circuit, packet, wormhole, virtual channel random
Bisection bandwidth (how much data can be sent along the net)
Reliable delivery
Flow Control
“State” : Space sharing, timesharing, stateless

• Network interfaces: Dumb: Fifo, control registers
Smart: DMA (Direct Memory Access) controllers
Very Smart: handle protocol managememt

2.3.4 Active Messages

[Not yet written]

2.4 OpenMP for Shared Memory Parallel Programming

OpenMP is the current industry standard for shared-memory parallel programming directives.
Jointly defined by a group of major computer hardware and software vendors, OpenMP Application
Program Interface (API) supports shared-memory parallel programming in C/C++ and Fortran
on Unix and Windows NT platforms. The OpenMP specifications are owned and managed by the
OpenMP Architecture Review Board (ARB). For detailed information about OpenMP, we refer
readers to its website at

http://www.openmp.org/.

OpenMP stands for Open specifications for Multi Processing. It specify a set of compiler direc-
tives, library routines and environment variables as an API for writing multi-thread applications
in C/C++ and Fortran. With these directives or pragmas, multi-thread codes are generated by
compilers. OpenMP is a shared momoery model. Threads communicate by sharing variables. The
cost of communication comes from the synchronization of data sharing in order to protect data
conficts.

Compiler pragmas in OpenMP take the following forms:

• for C and C++,

28 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

#pragma omp construct [clause [clause]...],

• for Fortran,

C$OMP construct [clause [clause]...]
!$OMP construct [clause [clause]...]
*$OMP construct [clause [clause]...].

For example, OpenMP is usually used to parallelize loops, a simple parallel C program with its
loops split up looks like

void main()

{

double Data[10000];

#pragma omp parallel for

for (int i=0; i<10000; i++) {

task(Data[i]);

}

}

If all the OpenMP constructs in a program are compiler pragmas, then this program can be compiled
by compilers that do not support OpenMP.

OpenMP’s constructs fall into 5 categories, which are briefly introduced as the following:

1. Parallel Regions
Threads are created with the “omp parallel” pragma. In the following example, a 8-thread
parallel region is created:

double Data[10000];

omp_set_num_threads(8);

#pragma omp parallel

{

int ID = omp_get_thread_num();

task(ID,Data);

}

Each thread calls task(ID,Data) for ID = 0 to 7.

2. Work Sharing
The “for” work-sharing construct splits up loop iterations among the threads a parallel region.
The pragma used in our first example is the short hand form of “omp parallel” and “omp
for” pragmas:

void main()

{

double Data[10000];

#pragma omp parallel

#pragma omp for

for (int i=0; i<10000; i++) {

task(Data[i]);

}

}

Preface 29

“Sections” is another work-sharing construct which assigns different jobs (different pieces of
code) to each thread in a parallel region. For example,

#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

{

job1();

}

#pragma omp section

{

job2();

}

}

}

Similarly, there is also a “parallel sections” construct.

3. Data Environment
In the shared-memory programming model, global variables are shared among threads, which
are file scope and static variables for C, and common blocks, save and module variables for
Fortran. Automatic variables within a statement block are private, also stack variables in
sub-programs called from parallel regions. Constructs and clauses are available to selectively
change storage attributes.

• The “shared” clause uses a shared memory model for the variable, that is, all threads
share the same variable.

• The “private” clause gives a local copy of the variable in each thread.

• “firstprivate” is like “private”, but the variable is initialized with its value before the
thread creation.

• “lastprivate” is like “private”, but the value is passed to a global variable after the thread
execution.

4. Synchronization
The following constructs are used to support synchronization:

• “critical” and “end critical” constructs define a critical region, where only one thread
can enter at a time.

• “atomic” construct defines a critical region that only contains one simple statement.

• “barrier” construct is usually implicit, for example at the end of a parallel region or at
the end of a “for” work-sharing construct. The barrier construct makes threads wait
until all of them arrive.

• “ordered” construct enforces the sequential order for a block of code.

• “master” construct marks a block of code to be only executed by the master thread.
The other threads just skip it.

30 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

• “single” construct marks a block of code to be executed only by one thread.

• “flush” construct denotes a sequence point where a thread tries to create a consistent
view of memory.

5. Runtime functions and environment variables
Besides constructs, there are clauses, library routines and environment variables in OpenMP.
We list a few of the most important below, please refer to OpenMP’s web site for more details.

• The number of threads can be controlled using the runtime environment rou-
tines “omp set num threads()”, “omp get num threads()”, “omp get thread num()”,
“omp get max threads()”.

• The number of processors in the system is given by “omp num procs()”.

2.5 STARP

Star-P is a set of extensions to Matlab aimed at making it simple to parallelize many common
computations. A running instance of Star-P consists of a control Matlab process (connected to the
Matlab notebook/desktop the user sees) and a slaved Matlab processes for each processor available
to the system. It permits a matlab user to declare distributed matrix objects, whose contents are
distributed in various ways across the processors available to Star-P, and to direct each processor
to apply a matlab function to the portion of a distributed matrix it stores. It also supplies parallel
versions of many of the dense (and some of the sparse) matrix operations which occur in scientific
computing, such as eigenvector/eigenvalue computations.

This makes Star-P especially convenient for embarassingly parallel problems, as all one needs
to do is:

1. Write a matlab function which carries out a part of the embarassingly parallel problem,
parametrized such that it can take the inputs it needs as the rows or columns of a matrix.

2. Construct a distributed matrix containing the parameters needed for each slave process.

3. Tell each slave to apply the function to the portion of the matrix it has.

4. Combine the results from each process.

Now, some details. Star-P defines the variable np to store the number of slave processes it
controls. On a machine with two apparent processors, for example, np would equal 2. Distributed
matrices are declared in Star-P by appending *p to the dimension along which you want your
matrix to be distributed. For example, the code below declares A to be a row-distributed matrix;
each processor theoretically gets an equal chunk of rows from the matrix.

A = ones(100*p, 100);

To declare a column-distributed matrix, one simply does:

A = ones(100, 100*p);

Beware: if the number of processors you’re working with does not evenly divide the size of the
dimension you are distributing along, you may encounter unexpected results. Star-P also supports
matrices which are distributed into blocks, by appending *p to both dimensions; we will not go
into the details of this here.

After declaring A as a distributed matrix, simply evaluating it will yield something like:

Preface 31

A = ddense object: 100-by-100

This is because the elements of A are stored in the slave processors. To bring the contents to the
control process, simply index A. For example, if you wanted to view the entire contents, you’d do
A(:,:).

To apply a Matlab function to the chunks of a distributed matrix, use the mm command. It
takes a string containing a procedure name and a list of arguments, each of which may or may not
be distributed. It orders each slave to apply the function to the chunk of each distributed argument
(echoing non-distributed arguments) and returns a matrix containing the results of each appended
together. For example, mm(’fft’, A) (with A defined as a 100-by-100 column distributed matrix)
would apply the fft function to each of the 25-column chunks. Beware: the chunks must each be
distributed in the same way, and the function must return chunks of the same size. Also beware:
mm is meant to apply a function to chunks. If you want to compute the two-dimensional fft of A
in parallel, do not use mm(’fft2’, A); that will compute (in serial) the fft2s of each chunk of
A and return them in a matrix. eig(A), on the other hand, will apply the parallel algorithm for
eigenstuff to A.

Communication between processors must be mediated by the control process. This incurs
substantial communications overhead, as the information must first be moved to the control process,
processed, then sent back. It also necessitates the use of some unusual programming idioms; one
common pattern is to break up a parallel computation into steps, call each step using mm, then do
matrix column or row swapping in the control process on the distributed matrix to move information
between the processors. For example, given a matrix B = randn(10, 2*p) (on a Star-P process
with two slaves), the command B = B(:,[2,1]) will swap elements between the two processors.

Some other things to be aware of:

1. Star-P provides its functionality by overloading variables and functions from Matlab. This
means that if you overwrite certain variable names (or define your own versions of certain
functions), they will shadow the parallel versions. In particular, DO NOT declare a variable
named p; if you do, instead of distributing matrices when *p is appended, you will multiply
each element by your variable p.

2. persistent variables are often useful for keeping state across stepped computations. The
first time the function is called, each persistent variable will be bound to the empty matrix
[]; a simple if can test this and initialize it the first time around. Its value will then be
stored across multiple invocations of the function. If you use this technique, make sure to
clear those variables (or restart Star-P) to ensure that state isn’t propagated across runs.

3. To execute a different computation depending on processor id, create a matrix id = 1:np

and pass it as an argument to the function you call using mm. Each slave process will get a
different value of id which it can use as a different unique identifier.

4. If mm doesn’t appear to find your m-files, run the mmpath command (which takes one argument
- the directory you want mm to search in).

Have fun!

32 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Lecture 3

Parallel Prefix

3.1 Parallel Prefix

An important primitive for (data) parallel computing is the scan operation, also called prefix sum
which takes an associated binary operator ⊕ and an ordered set [a1, . . . , an] of n elements and
returns the ordered set

[a1, (a1 ⊕ a2), . . . , (a1 ⊕ a2 ⊕ . . . ⊕ an)].

For example,

plus scan([1, 2, 3, 4, 5, 6, 7, 8]) = [1, 3, 6, 10, 15, 21, 28, 36].

Notice that computing the scan of an n-element array requires n − 1 serial operations.
Suppose we have n processors, each with one element of the array. If we are interested only

in the last element bn, which is the total sum, then it is easy to see how to compute it efficiently
in parallel: we can just break the array recursively into two halves, and add the sums of the two
halves, recursively. Associated with the computation is a complete binary tree, each internal node
containing the sum of its descendent leaves. With n processors, this algorithm takes O(log n) steps.
If we have only p < n processors, we can break the array into p subarrays, each with roughly
dn/pe elements. In the first step, each processor adds its own elements. The problem is then
reduced to one with p elements. So we can perform the log p time algorithm. The total time is
clearly O(n/p + log p) and communication only occur in the second step. With an architecture
like hypercube and fat tree, we can embed the complete binary tree so that the communication is
performed directly by communication links.

Now we discuss a parallel method of finding all elements [b1, . . . , bn] = ⊕ scan[a1, . . . , an] also
in O(log n) time, assuming we have n processors each with one element of the array. The following
is a Parallel Prefix algorithm to compute the scan of an array.

Function scan([ai]):

1. Compute pairwise sums, communicating with the adjacent processor
ci := ai−1 ⊕ ai (if i even)

2. Compute the even entries of the output by recursing on the size n
2 array of pairwise sums

bi := scan([ci]) (if i even)

3. Fill in the odd entries of the output with a pairwise sum
bi := bi−1 ⊕ ai (if i odd)

4. Return [bi].

33

34 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Up the tree

1 2 3 4 5 6 7 8

3 7 11 15

10 26

36
Down the tree (Prefix)

1 3 6 10 15 21 28 36

3 10 21 36

10 36

36

Figure 3.1: Action of the Parallel Prefix algorithm.

Up the tree

1 2 3 4 5 6 7 8

3 7 11 15

10 26

36
Down the tree (Prefix Exclude)

0 1 3 6 10 15 21 28

0 3 10 21

0 10

0

Figure 3.2: The Parallel Prefix Exclude Algorithm.

An example using the vector [1, 2, 3, 4, 5, 6, 7, 8] is shown in Figure 3.1. Going up the tree, we
simply compute the pairwise sums. Going down the tree, we use the updates according to points
2 and 3 above. For even position, we use the value of the parent node (bi). For odd positions, we
add the value of the node left of the parent node (bi−1) to the current value (ai).

We can create variants of the algorithm by modifying the update formulas 2 and 3. For example,
the excluded prefix sum

[0, a1, (a1 ⊕ a2), . . . , (a1 ⊕ a2 ⊕ . . . ⊕ an−1)]

can be computed using the rule:

bi := excl scan([ci]) (if i odd), (3.1)

bi := bi−1 ⊕ ai−1 (if i even). (3.2)

Figure 3.2 illustrates this algorithm using the same input vector as before.
The total number of ⊕ operations performed by the Parallel Prefix algorithm is (ignoring a

constant term of ±1):

Tn =

I
︷︸︸︷
n

2
+

II
︷︸︸︷

Tn/2 +

III
︷︸︸︷
n

2
= n + Tn/2

= 2n

Preface 35

If there is a processor for each array element, then the number of parallel operations is:

Tn =

I
︷︸︸︷

1 +

II
︷︸︸︷

Tn/2 +

III
︷︸︸︷

1

= 2 + Tn/2

= 2 lg n

3.2 The “Myth” of lg n

In practice, we usually do not have a processor for each array element. Instead, there will likely
be many more array elements than processors. For example, if we have 32 processors and an array
of 32000 numbers, then each processor should store a contiguous section of 1000 array elements.
Suppose we have n elements and p processors, and define k = n/p. Then the procedure to compute
the scan is:

1. At each processor i, compute a local scan serially, for n/p consecutive elements, giving result
[di

1, d
i
2, . . . , d

i
k]. Notice that this step vectorizes over processors.

2. Use the parallel prefix algorithm to compute

scan([d1
k, d

2
k, . . . , d

p
k]) = [b1, b2, . . . , bp]

3. At each processor i > 1, add bi−1 to all elements di
j .

The time taken for the will be

T = 2 ·
(

time to add and store
n/p numbers serially

)

+ 2 · (log p) ·






Communication time
up and down a tree,

and a few adds






In the limiting case of p � n, the lg p message passes are an insignificant portion of the
computational time, and the speedup is due solely to the availability of a number of processes each
doing the prefix operation serially.

3.3 Applications of Parallel Prefix

3.3.1 Segmented Scan

We can extend the parallel scan algorithm to perform segmented scan. In segmented scan the
original sequence is used along with an additional sequence of booleans. These booleans are used
to identify the start of a new segment. Segmented scan is simply prefix scan with the additional
condition the the sum starts over at the beginning of a new segment. Thus the following inputs
would produce the following result when applying segmented plus scan on the array A and boolean
array C.

A = [1 2 3 4 5 6 7 8 9 10]

C = [1 0 0 0 1 0 1 1 0 1]

plus scan(A, C) = [1 3 6 10 5 11 7 8 17 10]

36 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

We now show how to reduce segmented scan to simple scan. We define an operator,
⊕

2, whose

operand is a pair

(

x
y

)

. We denote this operand as an element of the 2-element representation of

A and C, where x and y are corresponding elements from the vectors A and C. The operands of
the example above are given as:

(

1
1

)(

2
0

)(

3
0

)(

4
0

)(

5
1

)(

6
0

)(

7
1

)(

8
1

)(

9
0

)(

10
1

)

The operator (
⊕

2) is defined as follows:

⊕

2

(

y
0

) (

y
1

)

(

x
0

) (

x ⊕ y
0

) (

y
1

)

(

x
1

) (

x ⊕ y
1

) (

y
1

)

As an exercise, we can show that the binary operator
⊕

2 defined above is associative and
exhibits the segmenting behavior we want: for each vector A and each boolean vector C, let AC
be the 2-element representation of A and C. For each binary associative operator ⊕, the result
of
⊕

2 scan(AC) gives a 2-element vector whose first row is equal to the vector computed by
segmented ⊕ scan(A, C). Therefore, we can apply the parallel scan algorithm to compute the
segmented scan.

Notice that the method of assigning each segment to a separate processor may results in load
imbalance.

3.3.2 Csanky’s Matrix Inversion

The Csanky matrix inversion algorithm is representative of a number of the problems that exist
in applying theoretical parallelization schemes to practical problems. The goal here is to create
a matrix inversion routine that can be extended to a parallel implementation. A typical serial
implementation would require the solution of O(n2) linear equations, and the problem at first looks
unparallelizable. The obvious solution, then, is to search for a parallel prefix type algorithm.

Csanky’s algorithm can be described as follows — the Cayley-Hamilton lemma states that for
a given matrix x:

p(x) = det(xI − A) = xn + c1x
n−1 + . . . + cn

where cn = det(A), then

p(A) = 0 = An + c1A
n−1 + . . . + cn

Multiplying each side by A−1 and rearranging yields:

A−1 = (An−1 + c1A
n−2 + . . . + cn−1)/(−1/cn)

The ci in this equation can be calculated by Leverier’s lemma, which relate the ci to sk = tr(Ak).
The Csanky algorithm then, is to calculate the Ai by parallel prefix, compute the trace of each Ai,
calculate the ci from Leverier’s lemma, and use these to generate A−1.

Preface 37

Figure 3.3: Babbage’s Difference Engine, reconstructed by the Science Museum of London

While the Csanky algorithm is useful in theory, it suffers a number of practical shortcomings.
The most glaring problem is the repeated multiplication of the A matix. Unless the coefficients
of A are very close to 1, the terms of An are likely to increase towards infinity or decay to zero
quite rapidly, making their storage as floating point values very difficult. Therefore, the algorithm
is inherently unstable.

3.3.3 Babbage and Carry Look-Ahead Addition

Charles Babbage is considered by many to be the founder of modern computing. In the 1820s he
pioneered the idea of mechanical computing with his design of a “Difference Engine,” the purpose
of which was to create highly accurate engineering tables.

A central concern in mechanical addition procedures is the idea of “carrying,” for example, the
overflow caused by adding two digits in decimal notation whose sum is greater than or equal to
10. Carrying, as is taught to elementary school children everywhere, is inherently serial, as two
numbers are added left to right.

However, the carrying problem can be treated in a parallel fashion by use of parallel prefix.
More specifically, consider:

c3 c2 c1 c0 Carry
a3 a2 a1 a0 First Integer

+ b3 b2 b1 b0 Second Integer

s4 s3 s2 s1 s0 Sum

By algebraic manipulation, one can create a transformation matrix for computing ci from ci−1:

(

ci

1

)

=

(

ai + bi aibi

0 1

)

·
(

ci−1

1

)

Thus, carry look-ahead can be performed by parallel prefix. Each ci is computed by parallel
prefix, and then the si are calculated in parallel.

38 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

3.4 Parallel Prefix in MPI

The MPI version of “parallel prefix” is performed by MPI_Scan. From Using MPI by Gropp, Lusk,
and Skjellum (MIT Press, 1999):

[MPI_Scan] is much like MPI_Allreduce in that the values are formed by combining
values contributed by each process and that each process receives a result. The difference
is that the result returned by the process with rank r is the result of operating on the
input elements on processes with rank 0, 1, . . . , r.

Essentially, MPI_Scan operates locally on a vector and passes a result to each processor. If
the defined operation of MPI_Scan is MPI_Sum, the result passed to each process is the partial sum
including the numbers on the current process.

MPI_Scan, upon further investigation, is not a true parallel prefix algorithm. It appears that
the partial sum from each process is passed to the process in a serial manner. That is, the message
passing portion of MPI_Scan does not scale as lg p, but rather as simply p. However, as discussed in
the Section 3.2, the message passing time cost is so small in large systems, that it can be neglected.

Lecture 4

Dense Linear Algebra

4.1 Dense Matrices

We next look at dense linear systems of the form Ax = b. Here A is a given n × n matrix and
b is a given n-vector; we need to solve for the unknown n-vector x. We shall assume that A is a
nonsingular matrix, so that for every b there is a unique solution x = A−1b. Before solving dense
linear algebra problems, we should define the terms sparse, dense, and structured.

Definition. (Wilkinson) A sparse matrix is a matrix with enough zeros that it is worth taking
advantage of them.

Definition. A structured matrix has enough structure that it is worthwhile to use it.

For example, a Toeplitz Matrix is defined by 2n parameters. All entries on a diagonal are the
same:

ToeplitzMatrix =













1 4
2 1 4

2 1 4
. . .

. . .
. . .

. . .
. . .

. . .

2 1 4
2 1













Definition. A dense matrix is neither sparse nor structured.

These definitions are useful because they will help us identify whether or not there is any
inherent parallelism in the problem itself. It is clear that a sparse matrix does indeed have an
inherent structure to it that may conceivably result in performance gains due to parallelism. We will
discuss ways to exploit this in the next chapter. The Toeplitz matrix also has some structure that
may be exploited to realize some performance gains. When we formally identify these structures,
a central question we seem to be asking is if it is it worth taking advantage of this? The answer,
as in all of parallel computing, is: “it depends”.

If n = 50, hardly. The standard O(n3) algorithm for ordinary matrices can solve Tx = b,
ignoring its structure, in under one one-hundredth of one second on a workstation. On the other
hand, for large n, it pays to use one of the “fast” algorithms that run in time O(n2) or even
O(n log2 n). What do we mean by “fast” in this case?

It certainly seems intuitive that the more we know about how the matrix entries are populated
the better we should be able to design our algorithms to exploit this knowledge. However, for the

39

40 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

purposes of our discussion in this chapter, this does not seem to help for dense matrices. This does
not mean that any parallel dense linear algebra algorithm should be conceived or even code in a
serial manner. What it does mean, however, is that we look particularly hard at what the matrix
A represents in the practical application for which we are trying to solve the equation Ax = b. By
examining the matrix carefully, we might indeed recognize some other less-obvious ’structure’ that
we might be able to exploit.

4.2 Applications

There are not many applications for large dense linear algebra routines, perhaps due to the “law
of nature” below.

• “Law of Nature”: Nature does not throw n2 numbers at us haphazardly, therefore there are
few dense matrix problems.

Some believe that there are no real problems that will turn up n2 numbers to populate the
n × n matrix without exhibiting some form of underlying structure. This implies that we should
seek methods to identify the structure underlying the matrix. This becomes particularly important
when the size of the system becomes large.

What does it mean to ’seek methods to identify the structure’? Plainly speaking that answer
is not known not just because it is inherently difficult but also because prospective users of dense
linear algebra algorithms (as opposed to developers of such algorithms) have not started to identify
the structure of their A matrices. Sometimes identifying the structure might involve looking beyond
traditional literature in the field.

4.2.1 Uncovering the structure from seemingly unstructured problems

For example, in communications and radar processing applications, the matrix A can often be mod-
elled as being generated from another n×N matrix X that is in turn populated with independent,
identically distributed Gaussian elements. The matrix A in such applications will be symettric and
will then be obtained as A = XXT where (.)T is the transpose operator. At a first glance, it might
seem as though this might not provide any structure that can be exploited besides the symmetry
of A. However, this is not so. We simply have to dig a bit deeper.

The matrix A = XXT is actually a very well studied example in random matrix theory. Edelman
has studied these types of problems in his thesis and what turns out to be important is that in
solving Ax = b we need to have a way of characterizing the condition number of A. For matrices,
the condition number tells us how ’well behaved’ the matrix is. If the condition number is very high
then the numerical algorithms are likely to be unstable and there is little guarantee of numerical
accuracy. On the other hand, when the condition number is close to 1, the numerical accurarcy
is very high. It turns out that a mathematically precise characterization of the random condition
number of A is possible which ends up depending on the dimensions of the matrix X. Specifically
for a fixed n and large N (typically at least 10n is increased, the condition number of A will be
fairly localized i.e. its distribution will not have long tails. On the other hand, when N is about
the size of n the condition number distribution will not be localized. As a result when solving
x = A−1b we will get poor numerical accuracy in our solution of x.

This is important to remember because, as we have described all along, a central feature in
parallel computing is our need to distribute the data among different computing nodes (proces-
sors,clusters, etc) and to work on that chunk by itself as much as possible and then rely on inter-node

Preface 41

Year Size of Dense System Machine

1950’s ≈ 100

1991 55,296

1992 75,264 Intel

1993 75,264 Intel

1994 76,800 CM

1995 128,600 Intel

1996 128,600 Intel

1997 235000 Intel ASCI Red

1998 431344 IBM ASCI Blue

1999 431344 IBM ASCI Blue

2000 431344 IBM ASCI Blue

2001 518096 IBM ASCI White-Pacific

2002 1041216 Earth Simulator Computer

2003 1041216 Earth Simulator Computer

Table 4.1: Largest Dense Matrices Solved

communication to collect and form our answer. If we did not pay attention to the condition number
of A and correspondingly the condition number of chunks of A that reside on different processors,
our numerical accuracy for the parralel computing task would suffer.

This was just one example of how even in a seemingly unstructured case, insights from another
field, random matrix theory in this case, could potentially alter our impact or choice of algorithm
design. Incidentally, even what we just described above has not been incorporated into any parallel
applications in radar processing that we are aware of. Generally speaking, the design of efficient
parallel dense linear algebra algorithms will have to be motivated by and modified based on specific
applications with an emphasis on uncovering the structure even in seemingly unstructured problems.
This, by definition, is something that only users of algorithms could do. Until then, an equally
important task is to make dense linear algebra algorithms and libraries that run efficiently regardless
of the underlying structure while we wait for the applications to develop.

While there are not too many everyday applications that require dense linear algebra solutions,
it would be wrong to conclude that the world does not need large linear algebra libraries. Medium
sized problems are most easily solved with these libraries, and the first pass at larger problems are
best done with the libraries. Dense methods are the easiest to use, reliable, predictable, easiest to
write, and work best for small to medium problems.

For large problems, it is not clear whether dense methods are best, but other approaches often
require far more work.

4.3 Records

Table 4.1 shows the largest dense matrices solved. Problems that warrant such huge systems
to be solved are typically things like the Stealth bomber and large Boundary Element codes1.
Another application for large dense problems arise in the “methods of moments”, electro-magnetic
calculations used by the military.

1Typically this method involves a transformation using Greens Theorem from 3D to a dense 2D representation of
the problems. This is where the large data sets are generated.

42 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

It is important to understand that space considerations, not processor speeds, are what bound
the ability to tackle such large systems. Memory is the bottleneck in solving these large dense
systems. Only a tiny portion of the matrix can be stored inside the computer at any one time. It
is also instructive to look at how technological advances change some of these considerations.

For example, in 1996, the record setter of size n = 128, 600 required (2/3)n3 = 1.4 × 1015

arithmetic operations (or four times that many if it is a complex matrix) for its solution using
Gaussian elimination. On a fast uniprocessor workstation in 1996 running at 140 MFlops/sec,
that would take ten million seconds, about 16 and a half weeks; but on a large parallel machine,
running at 1000 times this speed, the time to solve it is only 2.7 hours. The storage requirement
was 8n2 = 1.3 × 1013 bytes, however. Can we afford this much main memory? Again, we need to
look at it in historical perspective.

In 1996, the price was as low as $10 per megabyte it would cost $ 130 million for enough memory
for the matrix. Today, however, the price for the memory is much lower. At 5 cents per megabyte,
the memory for the same system would be $650,000. The cost is still prohibitive, but much more
realistic.

In contrast, the Earth Simulator which can solve a dense linear algebra system with n = 1041216
would require (2/3)n3 = 7.5×1017 arithmetic operations (or four times that many if it is a complex
matrix) for its solution using Gaussian elimination. For a 2.25 GHz Pentium 4 uniprocessor based
workstation available today, at a speed of 3 GFlops/sec this would take 250 million seconds or
roughly 414 weeks or about 8 years! On the Earth Simulator running at its maximum of 35.86
TFlops/sec or about 10000 times the speed of a desktop machine, this would only take about 5.8
hrs! The storage requirement for this machine would be 8n2 = 8.7 × 1014 bytes which at 5 cents a
megabyte works out to about $43.5 million. This is still equally prohibitive athough the figurative
’bang for the buck’ keeps getting better.

As in 1996, the cost for the storage was not as high as we calculated. This is because in 1996,
when most parallel computers were specially designed supercomputers, “out of core” methods were
used to store the massive amount of data. In 2004, however, with the emergence of clusters as a
viable and powerful supercomputing option, network storage capability and management becomes
an equally important factor that adds to the cost and complexity of the parallel computer.

In general, however, Moore’s law does indeed seem to be helpful because the cost per Gigabyte
especially for systems with large storage capacity keeps getting lower. Concurrently the density of
these storage media keeps increasing as well so that the amount of physical space needed to store
these systems becomes smalller. As a result, we can expect that as storage systems become cheaper
and denser, it becomes increasingly more practical to design and maintain parallel computers.

The accompanying figures show some of these trends in storage density, and price.

4.4 Algorithms, and mapping matrices to processors

There is a simple minded view of parallel dense matrix computation that is based on these assump-
tions:

• one matrix element per processor

• a huge number (n2, or even n3) of processors

• communication is instantaneous

Preface 43

Figure 4.1: Storage sub system cost trends

Figure 4.2: Trend in storage capacity

Figure 4.3: Average price per Mb cost trends

44 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 4.4: Storage density trends

Slow Memory Memory

CacheFast memory

Fastest Memory Register

Figure 4.5: Matrix Operations on 1 processor

This is taught frequently in theory classes, but has no practical application. Communication
cost is critical, and no one can afford n2 processors when n = 128, 000.2

In practical parallel matrix computation, it is essential to have large chunks of each matrix
on each processor. There are several reasons for this. The first is simply that there are far more
matrix elements than processors! Second, it is important to achieve message vectorization. The
communications that occur should be organized into a small number of large messages, because of
the high message overhead. Lastly, uniprocessor performance is heavily dependent on the nature
of the local computation done on each processor.

4.5 The memory hierarchy

Parallel machines are built out of ordinary sequential processors. Fast microprocessors now can
run far faster than the memory that supports them, and the gap is widening. The cycle time of a
current microprocessor in a fast workstation is now in the 3 – 10 nanosecond range, while DRAM
memory is clocked at about 70 nanoseconds. Typically, the memory bandwidth onto the processor
is close to an order of magnitude less than the bandwidth required to support the computation.

2Biological computers have this many processing elements; the human brain has on the order of 1011 neurons.

Preface 45

To match the bandwidths of the fast processor and the slow memory, several added layers of
memory hierarchy are employed by architects. The processor has registers that are as fast as the
processing units. They are connected to an on-chip cache that is nearly that fast, but is small
(a few ten thousands of bytes). This is connected to an off-chip level-two cache made from fast
but expensive static random access memory (SRAM) chips. Finally, main memory is built from
the least cost per bit technology, dynamic RAM (DRAM). A similar caching structure supports
instruction accesses.

When LINPACK was designed (the mid 1970s) these considerations were just over the horizon.
Its designers used what was then an accepted model of cost: the number of arithmetic operations.
Today, a more relevant metric is the number of references to memory that miss the cache and
cause a cache line to be moved from main memory to a higher level of the hierarchy. To write
portable software that performs well under this metric is unfortunately a much more complex task.
In fact, one cannot predict how many cache misses a code will incur by examining the code. One
cannot predict it by examining the machine code that the compiler generates! The behavior of real
memory systems is quite complex. But, as we shall now show, the programmer can still write quite
acceptable code.

(We have a bit of a paradox in that this issue does not really arise on Cray vector computers.
These computers have no cache. They have no DRAM, either! The whole main memory is built of
SRAM, which is expensive, and is fast enough to support the full speed of the processor. The high
bandwidth memory technology raises the machine cost dramatically, and makes the programmer’s
job a lot simpler. When one considers the enormous cost of software, this has seemed like a
reasonable tradeoff.

Why then aren’t parallel machines built out of Cray’s fast technology? The answer seems
to be that the microprocessors used in workstations and PCs have become as fast as the vector
processors. Their usual applications do pretty well with cache in the memory hierarchy, without
reprogramming. Enormous investments are made in this technology, which has improved at a
remarkable rate. And so, because these technologies appeal to a mass market, they have simple
priced the expensive vector machines out of a large part of their market niche.)

4.6 Single processor condiderations for dense linear algebra

If software is expected to perform optimally in a parallel computing environment, performance
considerations of computation on a single processor must first be evaluated.

4.6.1 LAPACK and the BLAS

Dense linear algebra operations are critical to optimize as they are very compute bound. Matrix
multiply, with its 2n3 operations involving 3n2 matrix elements, is certainly no exception: there is on
O(n) reuse of the data. If all the matrices fit in the cache, we get high performance. Unfortunately,
we use supercomputers for big problems. The definition of “big” might well be “doesn’t fit in the
cache.”

A typical old-style algorithm, which uses the SDOT routine from the BLAS to do the compu-
tation via inner product, is shown in Figure 4.6.

This method produces disappointing performance because too many memory references are
needed to do an inner product. Putting it another way, if we use this approach we will get O(n3)
cache misses.

Table 4.6.1 shows the data reuse characteristics of several different routines in the BLAS (for
Basic Linear Algebra Subprograms) library.

46 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

=X

Figure 4.6: Matrix Multiply

Instruction Operations Memory Accesses Ops /Mem Ref
(load/stores)

BLAS1: SAXPY (Single Precision Ax Plus y) 2n 3n 2
3

BLAS1: SAXPY α = x . y 2n 2n 1

BLAS2: Matrix-vec y = Ax + y 2n2 n2 2

BLAS3: Matrix-Matrix C = AB + C 2n3 4n2 1
2n

Table 4.2: Basic Linear Algebra Subroutines (BLAS)

Creators of the LAPACK software library for dense linear algebra accepted the design challenge
of enabling developers to write portable software that could minimize costly cache misses on the
memory hierarchy of any hardware platform.

The LAPACK designers’ strategy to achieve this was to have manufacturers write fast BLAS,
especially for the BLAS3. Then, LAPACK codes call the BLAS. Ergo, LAPACK gets high perfor-
mance. In reality, two things go wrong. Manufacturers dont make much of an investment in their
BLAS. And LAPACK does other things, so Amdahl’s law applies.

4.6.2 Reinventing dense linear algebra optimization

In recent years, a new theory has emerged for achieving optimized dense linear algebra computation
in a portable fashion. The theory is based one of the most fundabmental principles of computer
science, recursion, yet it escaped experts for many years.

The Fundamental Triangle

In section 5, the memory hierarchy, and its affect on performance, is discussed. Hardware architec-
ture elements, such as the memory hierarchy, forms just one apex of The Fundamental Triangle,
the other two represented by software algorithms and the compilers. The Fundamental Triangle is
a model for thinking about the performance of computer programs. A comprehensive evaluation
of performance cannot be acheived without thinking about these three components and their rela-
tionship to each other. For example, as was noted earlier algorithm designers cannot assume that
memory is infinite and that communication is costless, they must consider how their algorithms
they write will behave within the memory hierarchy. This section will show how a focus on the

Preface 47

Figure 4.7: The Fundamental Triangle

interaction between algorithm and architecture can expose optimization possibilities. Figure 4.7
shows a graphical depiction of The Fundamental Triangle.

Examining dense linear algebra algorithms

Some scalar a(i, j) algorithms may be expressed with square submatrix A(I : ∗ + NB − 1, J :
J +NB−1) algorithms. Also, dense matrix factorization is a BLAS level 3 computation consisting
of a series of submatrix computations. Each submatrix computation is BLAS level 3, and each
matrix operand in Level 3 is used multiple times. BLAS level 3 computation is O(n3) operations
on O(n2) data. Therefore, in order to minimize the expense of moving data in and out of cache,
the goal is to perform O(n) operations per data movement, and amortize the expense over ther
largest possible number of operations. The nature of dense linear algebra algorithms provides
the opportunity to do just that, with the potential closeness of data within submatrices, and the
frequent reuse of that data.

Architecture impact

The floating point arithmetic required for dense linear algebra computation is done in the L1 cache.
Operands must be located in the L1 cache in order for multiple reuse of the data to yield peak
performance. Moreover, operand data must map well into the L1 cache if reuse is to be possible.
Operand data is represented using Fortran/C 2-D arrays. Unfortunately, the matrices that these
2-D arrays represent, and their submatrices, do not map well into L1 cache. Since memory is one
dimensional, only one dimension of these arrays can be contiguous. For Fortran, the columns are
contiguous, and for C the rows are contiguous.

To deal with this issue, this theory proposes that algorithms should be modified to map the
input data from the native 2-D array representation to contiguous submatrices that can fit into the
L1 cache.

48 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 4.8: Recursive Submatrices

Blocking and Recursion

The principle of re-mapping data to form contiguous submatrices is known as blocking. The specific
advantage blocking provides for minimizing data movement depends on the size of the block. A
block becomes adventageous at minimizing data movement in and out of a level of the memory
hierarchy when that entire block can fit in that level of the memory hierarcy in entirety. Therefore,
for example, a certain size block would do well at minimizing register to cache data movement, and
a different size block would do well at minimizing chach to memory data movement. However, the
optimal size of these blocks is device dependent as it depends on the size of each level of the memory
hierarchy. LAPACK does do some fixed blocking to improve performance, but its effectiveness is
limited because the block size is fixed.

Writing dense linear algebra algorithms recursively enables automatic, variable blocking. Figure
4.8 shows how as the matrix is divided recursively into fours, blocking occurs naturally in sizes of
n, n/2, n/4... It is important to note that in order for these recursive blocks to be contiguous
themselves, the 2-D data must be carefully mapped to one-dimensional storage memory. This data
format is described in more detail in the next section.

The Recursive Block Format

The Recusive Block Format (RBF) maintains two dimensional data locality at every level of the one-
dimensional tierd memory structure. Figure 4.9 shows the Recursive Block Format for a triangular
matrix, an i right triangle of order N. Such a triange is converted to RBF by dividing each isoceles
right triangle leg by two to get two smaller triangles and one “square”(rectangle).

Cholesky example

By utilizing the Recursive Block Format and by adopting a recursive strategy for dense linear
algorithms, concise algorithms emerge. Figure 4.10 shows one node in the recursion tree of a
recursive Cholesky algorithm. At this node, Cholesky is applied to a matrix of size n. Note that

Preface 49

Figure 4.9: Recursive Block Format

n need not be the size of the original matrix, as this figure describes a node that could appear
anywhere in the recursion tree, not just the root.

The lower triangular matrix below the Cholesky node describes the input matrix in terms of its
recursive blocks, A11, A21, andA22

• n1 is computed as n1 = n/2, and n2 = n − n1

• C(n1) is computed recursively: Cholesky on submatrix A11

• When C(n1) has returned,L11 has been computed and it replaces A11

• The DTRSM operation then computes L21 = A21L11T
−1

• L21 now replaces A21

• The DSYRK operation uses L21 to do a rank n1 update of A22

• C(n2), Cholesky of the updated A22, is now computed recursively, and L22 is returned

The BLAS operations (i.e.DTRSM and DSYRK) can be implemented using matrix multiply,
and the operands to these operations are submatrices of A. This pattern generalizes to other dense
linear algebra computations (i.e. general matrix factor, QR factorization). Every dense linear
algebra algorithm calls the BLAS several times. Every one of the multiple BLAS calls has all of
its matrix operands equal to the submatrices of the matrices, A,B, .. of the dense linear algebra
algorithm. This pattern can be exploited to improve performance through the use of the Recursive
Data Format.

A note on dimension theory

The reason why a theory such as the Recursive Data Format has utility for improving computational
performance is because of the mis-match between the dimension of the data, and the dimension

50 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 4.10: Recursive Cholesky

the hardware can represent. The laws of science and relate two and three dimensional objects.
We live in a three dimensional world. However, computer storage is one dimensional. Moreover,
mathmeticians have proved that it is not possible to maintain closeness between points in a neigh-
borhood unless the two objects have the same dimension. Despite this negative theorem, and the
limitations it implies on the relationship between data and available computer storage hardware,
recursion provides a good approximation. Figure 4.11 shows this graphically via David Hilberts
space filling curve.

4.7 Parallel computing considerations for dense linear algebra

Load Balancing:

We will use Gaussian elimination to demonstrate the advantage of cyclic distribution in dense
linear algebra. If we carry out Gaussian elimination on a matrix with a one-dimensional block
distribution, then as the computation proceeds, processors on the left hand side of the machine
become idle after all their columns of the triangular matrices L and U have been computed. This
is also the case for two-dimensional block mappings. This is poor load-balancing. With cyclic
mapping, we balance the load much better.

In general, there are two methods to eliminate load imbalances:

• Rearrange the data for better load balancing (costs: communication).

• Rearrange the calculation: eliminate in unusual order.

So, should we convert the data from consecutive to cyclic order and from cyclic to consecutive
when we are done? The answer is “no”, and the better approach is to reorganize the algorithm
rather than the data. The idea behind this approach is to regard matrix indices as a set (not
necessarily ordered) instead of an ordered sequence.

In general if you have to rearrange the data, maybe you can rearrange the calculation.

Preface 51

Figure 4.11: Hilbert Space Filling Curve

7

2 31

5 6

8 9

4

Figure 4.12: Gaussian elimination With Bad Load Balancing

52 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 4.13: A stage in Gaussian elimination using cyclic order, where the shaded portion refers to
the zeros and the unshaded refers to the non-zero elements

Lesson of Computation Distribution:

Matrix indices are a set (unordered), not a sequence (ordered). We have been taught in school
to do operations in a linear order, but there is no mathematical reason to do this.

As Figure 4.9 demonstrates, we store data consecutively but do Gaussian elimination cyclicly.
In particular, if the block size is 10 × 10, the pivots are 1, 11, 21, 31, . . ., 2, 22, 32,

We can apply the above reorganized algorithm in block form, where each processor does one
block at a time and cycles through.

Here we are using all of our lessons, blocking for vectorization, and rearrangement of the calcu-
lation, not the data.

4.8 Better load balancing

In reality, the load balancing achieved by the two-dimensional cyclic mapping is not all that one
could desire. The problem comes from the fact that the work done by a processor that owns Aij

is a function of i and j, and in fact grows quadratically with i. Thus, the cyclic mapping tends to
overload the processors with a larger first processor index, as these tend to get matrix rows that
are lower and hence more expensive. A better method is to map the matrix rows to the processor
rows using some heuristic method to balance the load. Indeed, this is a further extension of the
moral above – the matrix row and column indices do not come from any natural ordering of the
equations and unknowns of the linear system – equation 10 has no special affinity for equations 9
and 11.

4.8.1 Problems

1. For performance analysis of the Gaussian elimination algorithm, one can ignore the operations
performed outside of the inner loop. Thus, the algorithm is equivalent to

do k = 1, n

do j = k,n

do i = k,n

a(i,j) = a(i,j) - a(i,k) * a(k,j)

enddo

Preface 53

enddo

enddo

The “owner” of a(i, j) gets the task of the computation in the inner loop, for all 1 ≤ k ≤
min(i, j).

Analyze the load imbalance that occurs in one-dimensional block mapping of the columns of
the matrix: n = bp and processor r is given the contiguous set of columns (r−1)b+1, . . . , rb.
(Hint: Up to low order terms, the average load per processor is n3/(3p) inner loop tasks, but
the most heavily loaded processor gets half again as much to do.)

Repeat this analysis for the two-dimensional block mapping. Does this imbalance affect the
scalability of the algorithm? Or does it just make a difference in the efficiency by some
constant factor, as in the one-dimensional case? If so, what factor?

Finally, do an analysis for the two-dimensional cyclic mapping. Assume the p = q2, and that
n = bq for some blocksize b. Does the cyclic method remove load imbalance completely?

54 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Lecture 5

Sparse Linear Algebra

The solution of a linear system Ax = b is one of the most important computational problems in
scientific computing. As we shown in the previous section, these linear systems are often derived
from a set of differential equations, by either finite difference or finite element formulation over a
discretized mesh.

The matrix A of a discretized problem is usually very sparse, namely it has enough zeros that can
be taken advantage of algorithmically. Sparse matrices can be divided into two classes: structured
sparse matrices and unstructured sparse matrices. A structured matrix is usually generated from
a structured regular grid and an unstructured matrix is usually generated from a non-uniform,
unstructured grid. Therefore, sparse techniques are designed in the simplest case for structured
sparse matrices and in the general case for unstructured matrices.

5.1 Cyclic Reduction for Structured Sparse Linear Systems

The simplest structured linear system is perhaps the tridiagonal system of linear equations Ax = b
where A is symmetric and positive definite and of form

A =










b1 c1

c1 b2 c2
. . .

. . .
. . .

cn−2 bn−1 cn−1

cn−1 bn










For example, the finite difference formulation of the one dimensional model problems

−u′′(x) + σu(x) = f(x), 0 < x < 1, σ ≥ 0 (5.1)

subject to the boundary conditions u(0) = u(1) = 0, on a uniform discretization of spacing h yields
of a triangular linear system of n = 1/h variables, where bi = 2+σh2 and ci = −1 for all 1 ≤ i ≤ n.

Sequentially, we can solve a triangular linear system Ax = b by factor A into A = LDLT , where
D is a diagonal matrix with diagonal (d1, d2, ..., dn) and L is of form

L =








1 0
e1 1 0

. . .
. . .

. . .

en−1 1








.

The factorization can be computed by the following simple algorithm.

55

56 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Algorithm Sequential Tridiagonal Solver

1. d1 = b1

2. e=c1/d1

3. for i = 2 : n

(a) d1 = bi − ei−1ci−1

(b) if i < n then ei = ci/di

The number float point operations is 3n upto a additive constant. With such factorization, we
can then solve the tridiagonal linear system in additional 5n float point operations. However, this
method is very reminiscent to the naive sequential algorithm for the prefix sum whose computation
graph has a critical path of length O(n). The cyclic reduction, developed by Golub and Hockney
[?], is very similar to the parallel prefix algorithm presented in Section ?? and it reduces the length
of dependency in the computational graph to the smallest possible.

The basic idea of the cyclic reduction is to first eliminate the odd numbered variables to obtain
a tridiagonal linear system of dn/2e equations. Then we solve the smaller linear system recursively.
Note that each variable appears in three equations. The elimination of the odd numbered variables
gives a tridiagonal system over the even numbered variables as following:

c′2i−2x2i−2 + b′2ix2i + c′2ix2i+2 = f ′
2i,

for all 2 ≤ i ≤ n/2, where

c′2i−2 = −(c2i−2c2i−1/b2i−1)

b′2i = (b2i − c2
2i−1/b2i−1 − c22i/b2i+1)

c′2i = c2ic2i+1/b2i+1

f ′
2i = f2i − c2i−1f2i−1/b2i−1 − c2if2i+1/b2i+1

Recursively solving this smaller linear tridiagonal system, we obtain the value of x2i for all
i = 1, ..., n/2. We can then compute the value of x2i−1 by the simple equation:

x2i−1 = (f2i−1 − c2i−2x2i−2 − c2i−1x2i)/b2i−1.

By simple calculation, we can show that the total number of float point operations is equal to
16n upto an additive constant. So the amount of total work is doubled compare with the sequential
algorithm discussed. But the length of the critical path is reduced to O(log n). It is worthwhile to
point out the the total work of the parallel prefix sum algorithm also double that of the sequential
algorithm. Parallel computing is about the trade-off of parallel time and the total work. The
discussion show that if we have n processors, then we can solve a tridiagonal linear system in
O(log n) time.

When the number of processor p is much less than n, similar to prefix sum, we hybrid the cyclic
reduction with the sequential factorization algorithm. We can show that the parallel float point
operations is bounded by 16n(n + log n)/p and the number of round of communication is bounded
by O(log p). The communication pattern is the nearest neighbor.

Cyclic Reduction has been generalized to two dimensional finite difference systems where the
matrix is a block tridiagonal matrix.

Preface 57

5.2 Sparse Direct Methods

Direct methods for solving sparse linear systems are important because of their generality and
robustness. For linear systems arising in certain applications, such as linear programming and some
structural engineering applications, they are the only feasible methods for numerical factorization.

5.2.1 LU Decomposition and Gaussian Elimination

The basis of direct methods for linear system is Gaussian Elimination, a process where we zero out
certain entry of the original matrix in a systematically way. Assume we want to solve Ax = b where
A is a sparse n × n symmetric positive definite matrix. The basic idea of the direct method is to
factor A into the product of triangular matrices A = LLT . Such a procedure is called Cholesky
factorization.

The first step of the Cholesky factorization is given by the following matrix fractorization:

A =

(

d vT

v C

)

=

(√
d 0

v/
√

d I

)(

1 0
0 C − (vvT)/d

)(√
d vT /

√
d

0 I

)

where v is n− 1× 1 and C is n− 1×n− 1. Note that d is positive since A is positive definite. The
term C − vvt

d is the Schur complement of A. This step is called elimination and the element d is
the pivot. The above decomposition is now carried out on the Schur complement recursively. We
therefore have the following algorithm for the Cholesky decomposition.

For k = 1, 2, . . . , n
a(k, k) =

√

a(k, k)

a(k + 1 : n, k) = a(k+1:n,k)
a(k,k)

a(k + 1 : n, k + 1 : n) = a(k + 1 : n, k + 1 : n) − a(k + 1 : n, k)T a(k + 1 : n, k)
end

The entries on and below the diagonal of the resulting matrix are the entries of L. The main
step in the algorithm is a rank 1 update to an n − 1 × n − 1 block.

Notice that some fill-in may occur when we carry out the decomposition. i.e., L may be
significantly less sparse than A. An important problem in direct solution to sparse linear system is
to find a “good” ordering of the rows and columns of the matrix to reduce the amount of fill.

As we showed in the previous section, the matrix of the linear system generated by the finite
element or finite difference formulation is associated with the graph given by the mesh. In fact,
the nonzero structure of each matrix A can be represented by a graph, G(A), where the rows are
represented by a vertex and every nonzero element by an edge. An example of a sparse matrix
and its corresponding graph is given in Figure 5.1. Note that nonzero entries are marked with a
symbol, whereas zero entries are not shown.

The fill-in resulting from Cholesky factorization is also illustrated in Figure 5.1. The new graph
G+(A) can be computed by looping over the nodes j, in order of the row operations, and adding
edges between j’s higher-numbered neighbors.

In the context of parallel computation, an important parameter the height of elimination tree,
which is the number of parallel elimination steps need to factor with an unlimited number of
processors. The elimination tree defined as follows from the fill-in calculation which was described
above. Let j > k. Define j >L k if ljk 6= 0 where ljk is the (j, k) entry of L, the result of the
decomposition. Let the parent of k, p(k) =min{j : j >L k}. This defines a tree since if β >L α,
γ >L α and γ > β then γ >L β. The elimination tree corresponding to our matrix is shown in
Figure 5.2.

58 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

1 3 7

8 6

4 10

9 5 2

1 3 7

8 6

4 10

9 5 2

FILL

G(A) G(A)
+

Figure 5.1: Graphical Representation of Fill-in

1 3 7

8 6

4 10

9 5 2

10

4
9

5

8
2

6
7 3

1

G(A) T(A)

+

Figure 5.2: The Elimination Tree

Preface 59

0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

0

10

20

30

40

50

60

70

80

90

1
00

nz = 300

spy(A)

Figure 5.3: Sparsity Structure of Semi-Random Symmetric Matrix

The order of elimination determines both fill and elimination tree height. Unfortunately, but
inevitably, finding the best ordering is NP-complete. Heuristics are used to reduce fill-in. The
following lists some commonly used ones.

• Ordering by minimum degree (this is SYMMMD in Matlab)

• nested dissection

• Cuthill-McKee ordering.

• reverse Cuthill-McKee (SYMRCM)

• ordering by number of non-zeros (COLPERM or COLMMD)

These ordering heuristics can be investigated in Matlab on various sparse matrices. The simplest
way to obtain a random sparse matrix is to use the command A=sprand(n,m,f), where n and m
denote the size of the matrix, and f is the fraction of nonzero elements. However, these matrices
are not based on any physical system, and hence may not illustrate the effectiveness of an ordering
scheme on a real world problem. An alternative is to use a database of sparse matrices, one of
which is available with the command/package ufget.

Once we have a sparse matrix, we can view it’s sparsity structure with the command spy(A).
An example with a randomly generated symmetric sparse matrix is given in Figure 5.3.

We now carry out Cholesky factorization of A using no ordering, and using SYMMMD. The
sparsity structures of the resulting triangular matrices are given in Figure 5.4. As shown, using a
heuristic-based ordering scheme results in significantly less fill in. This effect is usually more pro-
nounced when the matrix arises from a physical problem and hence has some associated structure.

We now examine an ordering method called nested dissection, which uses vertex separators in
a divide-and-conquer node ordering for sparse Gaussian elimination. Nested dissection [37, 38, 59]
was originally a sequential algorithm, pivoting on a single element at a time, but it is an attractive

60 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

0

10

20

30

40

50

60

70

80

90

1
00

nz = 255

0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

0

10

20

30

40

50

60

70

80

90

1
00

nz = 411

Chol: No Ordering Chol: SYMMMD

Figure 5.4: Sparsity Structure After Cholesky Factorization

parallel ordering as well because it produces blocks of pivots that can be eliminated independently
in parallel [9, 29, 40, 61, 74].

Consider a regular finite difference grid. By dissecting the graph along the center lines (enclosed
in dotted curves), the graph is split into four independent graphs, each of which can be solved in
parallel.

The connections are included only at the end of the computation in an analogous way to domain
decomposition discussed in earlier lectures. Figure 5.6 shows how a single domain can be split up
into two roughly equal sized domains A and B which are independent and a smaller domain C
that contains the connectivity.

One can now recursively order A and B, before finally proceeding to C. More generally, begin
by recursively ordering at the leaf level and then continue up the tree. The question now arises as
to how much fill is generated in this process. A recursion formula for the fill F generated for such

Figure 5.5: Nested Dissection

Preface 61

A B
C

Figure 5.6: Vertex Separators

a 2-dimension nested dissection algorithm is readily derived.

F (n) = 4F (
n

2
) +

(2
√

n)2

2
(5.2)

This yields upon solution

F (n) = 2n log(n) (5.3)

In an analogous manner, the elimination tree height is given by:

H(n) = H(
n

2
) + 2

√
n (5.4)

H(n) = const ×√
n (5.5)

Nested dissection can be generalized to three dimensional regular grid or other classes of graphs
that have small separators. We will come back to this point in the section of graph partitioning.

5.2.2 Parallel Factorization: the Multifrontal Algorithm

Nested dissection and other heuristics give the ordering. To factor in parallel, we need not only
find a good ordering in parallel, but also to perform the elimination in parallel. To achieve better
parallelism and scalability in elimination, a popular approach is to modify the algorithm so that
we are performing a rank k update to an n− k × n− k block. The basic step will now be given by

A =

(

D V T

V C

)

=

(

LD 0

V L−T
D I

)(

I 0
0 C − V D−1V T

)(

LT
D L−1

D V T

0 I

)

where C is n− k ×n− k, V is n− k × k and D = LDLT
D is k × k. D can be written in this way

since A is positive definite. Note that V D−1V T = (V L−T
D)(L−1

D V T).

The elimination tree shows where there is parallelism since we can “go up the separate branches
in parallel.” i.e. We can update a column of the matrix using only the columns below it in the

62 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

elimination tree. This leads to the multifrontal algorithm. The sequential version of the algorithm
is given below. For every column j there is a block Ūj (which is equivalent to V D−1V T).

Ūj = −
∑

k









ljk
li1k
...

lirk









(ljk li1k . . . lirk)

where the sum is taken over all descendants of j in the elimination tree. j, i1, i2, . . . , ir are the
indices of the non-zeros in column j of the Cholesky factor.

For j = 1, 2, . . . , n. Let j, i1, i2, . . . , ir be the indices of the non-zeros in column j of L. Let
c1, . . . , cs be the children of j in the elimination tree. Let Ū = Uc1 l . . . l Ucs

where the Ui’s were
defined in a previous step of the algorithm. l is the extend-add operator which is best explained
by example. Let

R =

(
5 8

5 p q
8 u v

)

, S =

(
5 9

5 w x
9 y z

)

(The rows of R correspond to rows 5 and 8 of the original matrix etc.) Then

R l S =






5 8 9

5 p + w q x
8 u v 0
9 y 0 z






Define

Fj =






ajj . . . ajir
...

. . .

airj . . . airir




 l Ū

(This corresponds to C − V D−1V T)
Now factor Fj









ljj 0 . . . 0
li1j
... I

lirj

















1 0 . . . 0
0
... Uj

0

















ljj li1j . . . lirj

0
... I
0









(Note that Uj has now been defined.)
We can use various BLAS kernels to carry out this algorithm. Recently, Kumar and Karypis

have shown that direct solver can be parallelized efficiently. They have designed a parallel algorithm
for factorization of sparse matrices that is more scalable than any other known algorithm for this
problem. They have shown that our parallel Cholesky factorization algorithm is asymptotically
as scalable as any parallel formulation of dense matrix factorization on both mesh and hypercube
architectures. Furthermore, their algorithm is equally scalable for sparse matrices arising from two-
and three-dimensional finite element problems.

They have also implemented and experimentally evaluated the algorithm on a 1024-processor
nCUBE 2 parallel computer and a 1024-processor Cray T3D on a variety of problems. In structural
engineering problems (Boeing-Harwell set) and matrices arising in linear programming (NETLIB

Preface 63

set), the preliminary implementation is able to achieve 14 to 20 GFlops on a 1024-processor Cray
T3D.

In its current form, the algorithm is applicable only to Cholesky factorization of sparse sym-
metric positive definite (SPD) matrices. SPD systems occur frequently in scientific applications
and are the most benign in terms of ease of solution by both direct and iterative methods. How-
ever, there are many applications that involve solving large sparse linear systems which are not
SPD. An efficient parallel algorithm for a direct solution to non-SPD sparse linear systems will be
extremely valuable because the theory of iterative methods is far less developed for general sparse
linear systems than it is for SPD systems.

5.3 Basic Iterative Methods

These methods will focus on the solution to the linear system Ax = b where A ∈ Rn×n and
x, b ∈ Rn, although the theory is equally valid for systems with complex elements.

The basic outline of the iterative methods is as follows: Choose some initial guess, xo, for the
solution vector. Generate a series of solution vectors, {x1, x2, . . . , xk}, through an iterative process
taking advantage of previous solution vectors.

Define x∗ as the true (optimal) solution vector. Each iterative solution vector is chosen such
that the absolute error, ei = ‖x∗ − xi‖, is decreasing with each iteration for some defined norm.
Define also the residual error, ri = ‖b − Axi‖, at each iteration. These error quantities are clearly
related by a simple transformation through A.

ri = b − Axi = Ax∗ − Axi = Aei

5.3.1 SuperLU-dist

SuperLU-dist is an iterative and approximate method for solving Ax = b. This simple algorithm
eliminates the need for pivoting. The elimination of pivoting enhances parallel implementations due
to the high communications overhead that pivoting imposes. The basic SuperLU-dist algorithm is
as follows:

Algorithm: SuperLU-dist

1. r = b − A ∗ x

2. backerr = maxi(
ri

(|A|∗|x|+|b|)i
)

3. if (backerr < ε) or (backerr > lasterr
2) then stop

4. solve: L ∗ U ∗ dx = r

5. x = x + dx

6. lasterr = backerr

7. loop to step 1

In this algorithm, x, L, and U are approximate while r is exact. This procedure usually converges
to a reasonable solution after only 0-3 iterations and the error is on the order of 10−n after n
iterations.

64 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

5.3.2 Jacobi Method

Perform the matrix decomposition A = D − L − U where D is some diagonal matrix, L is some
strictly lower triangular matrix and U is some strictly upper triangular matrix.

Any solution satisfying Ax = b is also a solution satisfying Dx = (L + U)x + b. This presents
a straightforward iteration scheme with small computation cost at each iteration. Solving for the
solution vector on the right-hand side involves inversion of a diagonal matrix. Assuming this inverse
exists, the following iterative method may be used.

xi = D−1 (L + U) xi−1 + D−1b

This method presents some nice computational features. The inverse term involves only the
diagonal matrix, D. The computational cost of computing this inverse is minimal. Additionally,
this may be carried out easily in parallel since each entry in the inverse does not depend on any
other entry.

5.3.3 Gauss-Seidel Method

This method is similar to Jacobi Method in that any solution satisfying Ax = b is now a solution
satisfying (D − L)x = Ub for the A = D − L − U decomposition. Assuming an inverse exists, the
following iterative method may be used.

xi = (D − L)−1Uxi−1 + (D − L)−1

This method is often stable in practice but is less easy to parallelize. The inverse term is now
a lower triangular matrix which presents a bottleneck for parallel operations.

This method presents some practical improvements over the Jacobi method. Consider the
computation of the jth element of the solution vector xi at the ith iteration. The lower triangular
nature of the inverse term demonstrates only the information of the (j + 1)th element through
the nth elements of the previous iteration solution vector xi−1 are used. These elements contain
information not available when the jth element of xi−1 was computed. In essence, this method
updates using only the most recent information.

5.3.4 Splitting Matrix Method

The previous methods are specialized cases of Splitting Matrix algorithms. These algorithms utilize
a decomposition A = M−N for solving the linear system Ax = b. The following iterative procedure
is used to compute the solution vector at the ith iteration.

Mxi = Nxi−1 + b

Consider the computational tradeoffs when choosing the decomposition.

• cost of computing M−1

• stability and convergence rate

It is interesting the analyze convergence properties of these methods. Consider the definitions
of absolute error, ei = x∗ − xi, and residual error, ri = Axi − b. An iteration using the above
algorithm yields the following.

Preface 65

x1 = M−1Nx0 + M−1b
= M−1(M − A)x0 + M−1b
= x0 + M−1r0

A similar form results from considering the absolute error.

x∗ = x0 + e0

= x0 + A−1r0

This shows that the convergence of the algorithm is in some way improved if the M−1 term
approximates A−1 with some accuracy. Consider the amount of change in the absolute error after
this iteration.

e1 = A−1r0 − M−1r0

= e0 − M−1Ae0

= M−1Ne0

Evaluating this change for a general iteration shows the error propagation.

ei =
(
M−1N

)i
e0

This relationship shows a bound on the error convergence. The largest eigenvalue, or spectral
eigenvalue, of the matrix M−1N determines the rate of convergence of these methods. This analysis
is similar to the solution of a general difference equation of the form xk = Axk−1. In either case,
the spectral radius of the matrix term must be less than 1 to ensure stability. The method will
converge to 0 faster if all the eigenvalue are clustered near the origin.

5.3.5 Weighted Splitting Matrix Method

The splitting matrix algorithm may be modified by including some scalar weighting term. This
scalar may be likened to the free scalar parameter used in practical implementations of Newton’s
method and Steepest Descent algorithms for optimization programming. Choose some scalar, w,
such that 0 < w < 1, for the following iteration.

xi = (1 − w)x0 + w
(
x0 + M−1v0

)

= x0 + wM−1v0

5.4 Red-Black Ordering for parallel Implementation

The concept of ordering seeks to separate the nodes of a given domain into subdomains. Red-black
ordering is a straightforward way to achieve this. The basic concept is to alternate assigning a
“color” to each node. Consider the one- and two-dimensional examples on regular grids..

The iterative procedure for these types of coloring schemes solves for variables at nodes with a
certain color, then solves for variables at nodes of the other color. A linear system can be formed
with a block structure corresponding to the color scheme.

[

BLACK MIXED
MIXED RED

]

This method can easily be extended to include more colors. A common practice is to choose
colors such that no nodes has neighbors of the same color. It is desired in such cases to minimize
the number of colors so as to reduce the number of iteration steps.

66 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

5.5 Conjugate Gradient Method

The Conjugate Gradient Method is the most prominent iterative method for solving sparse sym-
metric positive definite linear systems. We now examine this method from parallel computing
perspective. The following is a copy of a pseudocode for the conjugate gradient algorithm.
Algorithm: Conjugate Gradient

1. x0 = 0, r0 = b − Ax0 = b

2. do m = 1, to n steps

(a) if m = 1, then p1 = r0

else

β = rT
m−1rm−1/rT

m−2rm−2

pm = rm−1 + βpm−1

endif

(b) αm = rT
m−1rm−1/pT

mApm

(c) xm = xm−1 + αmpm

(d) rm = rm−1 − αmApm

When A is symmetric positive definite, the solution of Ax = b is equivalent to find a solution
to the following quadratic minimization problem.

min
x

φ(x) =
1

2
xT Ax − xT b.

In this setting, r0 = −∇φ and pT
i Apj = 0, i.e., pT

i and pj are conjugate with respect to A.
How many iterations shall we perform and how to reduce the number of iterations?

Theorem 5.5.1 Suppose the condition number is κ(A) = λmax(A)/λmin(A), since A is Symmetric
Positive Definite, ∀x0, suppose x∗ is a solution to Ax = b, then

||x∗ − xm||A ≤ 2||x∗ − x0||A(

√
κ − 1√
κ + 1

)m,

where ||V ||A = V T AV

Therefore, ||em|| ≤ 2||e0|| · (
√

κ−1√
κ+1

)m .

Another high order iterative method is Chebyshev iterative method. We refer interested readers
to the book by Own Axelsson (Iterative Solution Methods, Cambridge University Press). Conjugate
gradient method is a special Krylov subspace method. Other examples of Krylov subspace are
GMRES (Generalized Minimum Residual Method) and Lanczos Methods.

5.5.1 Parallel Conjugate Gradient

Within each iteration of the conjugate gradient algorithm a single matrix-vector product must be
taken. This calculation represents a bottleneck and the performance of conjugate gradient can be
improved by parallelizing this step.

First, the matrix (A), vector (x), and solution vector (y) are laid out by rows across multiple
processors as shown in Figure 5.7.

The algorithm for the distributed calculation is then simple: On each processor j, broadcast
x(j) and then compute y(j) = A(j, :) ∗ x.

Preface 67

Figure 5.7: Example distribution of A, x, and b on four processors

5.6 Preconditioning

Preconditioning is important in reducing the number of iterations needed to converge in many
iterative methods. Put more precisely, preconditioning makes iterative methods possible in practice.
Given a linear system Ax = b a parallel preconditioner is an invertible matrix C satisfying the
following:

1. The inverse C−1 is relatively easy to compute. More precisely, after preprocessing the matrix
C, solving the linear system Cy = b′ is much easier than solving the system Ax = b. Further,
there are fast parallel solvers for Cy = b′.

2. Iterative methods for solving the system C−1Ax = C−1b, such as, conjugate gradient1 should
converge much more quickly than they would for the system Ax = b.

Generally a preconditioner is intended to reduce κ(A).
Now the question is: how to choose a preconditioner C? There is no definite answer to this.

We list some of the popularly used preconditioning methods.

• The basic splitting matrix method and SOR can be viewed as preconditioning methods.

• Incomplete factorization preconditioning: the basic idea is to first choose a good “spar-
sity pattern” and perform factorization by Gaussian elimination. The method rejects those
fill-in entries that are either small enough (relative to diagonal entries) or in position outside
the sparsity pattern. In other words, we perform an approximate factorization L∗U∗ and
use this product as a preconditioner. One effective variant is to perform block incomplete
factorization to obtain a preconditioner.

The incomplete factorization methods are often effective when tuned for a particular appli-
cation. The methods also suffer from being too highly problem-dependent and the condition
number usually improves by only a constant factor.

1In general the matrix C
−1

A is not symmetric. Thus the formal analysis uses the matrix LAL
T where C

−1 = LL
T

[?].

68 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 5.8: Example conversion of the graph of matrix A (G(A)) to a subgraph (G(B))

• Subgraph preconditioning: The basic idea is to choose a subgraph of the graph defined
by the matrix of the linear system so that the linear system defined by the subgraph can be
solved efficiently and the edges of the original graph can be embedded in the subgraph with
small congestion and dilation, which implies small condition number of the preconditioned
matrix. In other words, the subgraph can “support” the original graph. An example of
converting a graph to a subgraph is shown in Figure 5.8.

The subgraph can be factored in O(n) space and time and applying the preconditioner takes
O(n) time per iteration.

• Block diagonal preconditioning: The observation of this method is that a matrix in many
applications can be naturally partitioned in the form of a 2 × 2 blocks

A =

(

A11 A12

A21 A22

)

Moreover, the linear system defined by A11 can be solved more efficiently. Block diagonal
preconditioning chooses a preconditioner with format

C =

(

B11 0
0 B22

)

with the condition that B11 and B22 are symmetric and

α1A11 ≤ B11 ≤ α2A11

β1A22 ≤ B22 ≤ β2A22

Block diagonal preconditioning methods are often used in conjunction with domain decom-
position technique. We can generalize the 2-block formula to multi-blocks, which correspond
to multi-region partition in the domain decomposition.

• Sparse approximate inverses: Sparse approximate inverses (B−1) of A can be computed
such that A ≈ B−1. This inverse is computed explicitly and the quantity ||B−1A − I||F is
minimized in parallel (by columns). This value of B−1 can then be used as a preconditioner.
This method has the advantage of being very parallel, but suffers from poor effectiveness in
some situations.

Preface 69

5.7 Symmetric Supernodes

The following Section on Symmetric Supernodes is an edited excerpt from “A Supern-
odal Approach to Sparse Partial Pivoting,” by Demmel, Eisenstat, Gilbert, Li, and
Liu.

The idea of a supernode is to group together columns with the same nonzero structure, so they
can be treated as a dense matrix for storage and computation. In the factorization A = LLT (or
A = LDLT), a supernode is a range (r : s) of columns of L with the same nonzero structure below
the diagonal; that is, L(r : s, r : s) is full lower triangular and every row of L(s : n, r : s) is either
full or zero.

All the updates from columns of a supernode are summed into a dense vector before the sparse
update is performed. This reduces indirect addressing and allows the inner loops to be unrolled.
In effect, a sequence of col-col updates is replaced by a supernode-column (sup-col) update. The
sup-col update can be implemented using a call to a standard dense Level 2 BLAS matrix-vector
multiplication kernel. This idea can be further extended to supernode-supernode (sup-sup) updates,
which can be implemented using a Level 3 BLAS dense matrix-matrix kernel. This can reduce
memory traffic by an order of magnitude, because a supernode in the cache can participate in
multiple column updates. Ng and Peyton reported that a sparse Cholesky algorithm based on
sup-sup updates typically runs 2.5 to 4.5 times as fast as a col-col algorithm.

To sum up, supernodes as the source of updates help because of the following:

1. The inner loop (over rows) has no indirect addressing. (Sparse Level 1 BLAS is replaced by
dense Level 1 BLAS.)

2. The outer loop (over columns in the supernode) can be unrolled to save memory references.
(Level 1 BLAS is replaced by Level 2 BLAS.)

Supernodes as the destination of updates help because of the following:

3. Elements of the source supernode can be reused in multiple columns of the destination su-
pernode to reduce cache misses. (Level 2 BLAS is replaced by Level 3 BLAS.)

Supernodes in sparse Cholesky can be determined during symbolic factorization, before the
numeric factorization begins. However, in sparse LU, the nonzero structure cannot be predicted
before numeric factorization, so we must identify supernodes on the fly. Furthermore, since the
factors L and U are no longer transposes of each other, we must generalize the definition of a
supernode.

5.7.1 Unsymmetric Supernodes

There are several possible ways to generalize the symmetric definition of supernodes to unsymmetric
factorization. We define F = L + U − I to be the filled matrix containing both L and U .

T1 Same row and column structures: A supernode is a range (r : s) of columns of L and rows of
U , such that the diagonal block F (r : s, r : s) is full, and outside that block all the columns
of L in the range have the same structure and all the rows of U in the range have the same
structure. T1 supernodes make it possible to do sup-sup updates, realizing all three benefits.

T2 Same column structure in L: A supernode is a range (r : s) of columns of L with triangular
diagonal block full and the same structure below the diagonal block. T2 supernodes allow
sup-col updates, realizing the first two benefits.

70 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 5.9: Four possible types of unsymmetric supernodes.

T3 Same column structure in L, full diagonal block in U : A supernode is a range (r : s) of columns
of L and U , such that the diagonal block F (r : s, r : s) is full, and below the diagonal block
the columns of L have the same structure. T3 supernodes allow sup-col updates, like T2. In
addition, if the storage for a supernode is organized as for a two-dimensional (2-D) array (for
Level 2 or 3 BLAS calls), T3 supernodes do not waste any space in the diagonal block of U .

T4 Same column structure in L and U : A supernode is a range (r : s) of columns of L and U
with identical structure. (Since the diagonal is nonzero, the diagonal block must be full.) T4
supernodes allow sup-col updates, and also simplify storage of L and U .

T5 Supernodes of AT A: A supernode is a range (r : s) of columns of L corresponding to a
Cholesky supernode of the symmetric matrix AT A. T5 supernodes are motivated by the
observation that (with suitable representations) the structures of L and U in the unsymmetric
factorization PA = LU are contained in the structure of the Cholesky factor of AT A. In
unsymmetric LU, these supernodes themselves are sparse, so we would waste time and space
operating on them. Thus we do not consider them further.

Figure 5.9 is a schematic of definitions T1 through T4.

Supernodes are only useful if they actually occur in practice. We reject T4 supernodes as being
too rare to make up for the simplicity of their storage scheme. T1 supernodes allow Level 3 BLAS
updates, but we can get most of their cache advantage with the more common T2 or T3 supernodes
by using supernode-panel updates. Thus we conclude that either T2 or T3 is best by our criteria.

Figure 5.10 shows a sample matrix and the nonzero structure of its factors with no pivoting.
Using definition T2, this matrix has four supernodes: {1, 2}, {3}, {4, 5, 6}, and {7, 8, 9, 10}. For
example, in columns 4, 5, and 6 the diagonal blocks of L and U are full, and the columns of L all
have nonzeros in rows 8 and 9. By definition T3, the matrix has five supernodes: {1, 2}, {3}, {4,
5, 6}, {7}, and {8, 9, 10}. Column 7 fails to join {8, 9, 10} as a T3 supernode because u78 is zero.

5.7.2 The Column Elimination Tree

Since our definition requires the columns of a supernode to be contiguous, we should get larger
supernodes if we bring together columns of L with the same nonzero structure. But the column
ordering is fixed, for sparsity, before numeric factorization; what can we do?

Preface 71

Figure 5.10: A sample matrix and its LU factors. Diagonal elements a55 and a88 are zero.

Figure 5.11: Supernodal structure bydefinitionT2 of the factors of the sample matrix.

72 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 5.12: LU factorization with supernode-column updates

In symmetric Cholesky factorization, one type of supernodes - the ”fundamental” supernodes -
can be made contiguous by permuting the matrix (symmetrically) according to a postorder on its
elimination tree. This postorder is an example of what Liu calls an equivalent reordering, which
does not change the sparsity of the factor. The postordered elimination tree can also be used to
locate the supernodes before the numeric factorization.

We proceed similarly for the unsymmetric case. Here the appropriate analogue of the symmetric
elimination tree is the column elimination tree, or column etree for short. The vertices of this tree are
the integers 1 through n, representing the columns of A. The column etree of A is the (symmetric)
elimination tree of the column intersection graph of A, or equivalently the elimination tree of AT A
provided there is no cancellation in computing AT A. See Gilbert and Ng for complete definitions.
The column etree can be computed from A in time almost linear in the number of nonzeros of A.

Just as a postorder on the symmetric elimination tree brings together symmetric supernodes,
we expect a postorder on the column etree to bring together unsymmetric supernodes. Thus, before
we factor the matrix, we compute its column etree and permute the matrix columns according to
a postorder on the tree.

5.7.3 Relaxed Supernodes

For most matrices, the average size of a supernode is only about 2 to 3 columns (though a few
supernodes are much larger). A large percentage of supernodes consist of only a single column,
many of which are leaves of the column etree. Therefore merging groups of columns at the fringe of
the etree into artificial supernodes regardless of their row structures can be beneficial. A parameter
r controls the granularity of the merge. A good merge rule is: node i is merged with its parent
node j when the subtree rooted at j has at most r nodes. In practice, the best values of r are
generally between 4 and 8 and yield improvements in running time of 5% to 15%.

Artificial supernodes are a special case of relaxed supernodes. They allow a small number of
zeros in the structure of any supernode, thus relaxing the condition that the columns must have
strictly nested structures.

Preface 73

5.7.4 Supernodal Numeric Factorization

Now we show how to modify the col-col algorithm to use sup-col updates and supernode-panel
updates. This section describes the numerical computation involved in the updates.

Supernode-Column Updated

Figure 5.12 sketches the sup-col algorithm. The only difference from the col-col algorithm is that
all the updates to a column from a single supernode are done together. Consider a supernode (r : s)
that updates column j. The coefficients of the updates are the values from a segment of column j
of U , namely U(r : s, j). The nonzero structure of such a segment is particularly simple: all the
nonzeros are contiguous, and follow all the zeros. Thus, if k is the index of the first nonzero row
in U(r : s, j), the updates to column j from supernode (r : s) come from columns k through s.
Since the supernode is stored as a dense matrix, these updates can be performed by a dense lower
triangular solve (with the matrix L(k : s, k : s)) and a dense matrix-vector multiplication (with the
matrix L(s + 1 : n, k : s)). The symbolic phase determines the value of k, that is, the position of
the first nonzero in the segment U(r : s, j).

The advantages of using sup-col updates are similar to those in the symmetric case. Efficient
Level 2 BLAS matrix-vector kernels can be used for the triangular solve and matrix-vector multiply.
Furthermore, all the updates from the supernodal columns can be collected in a dense vector before
doing a single scatter into the target vector. This reduces the amount of indirect addressing.

Supernode-Panel Updates

We can improve the sup-col algorithm further on machines with a memory hierarchy by changing
the data access pattern. The data we are accessing in the inner loop (lines 5-9 of Figure 5.12)
include the destination column j and all the updating supernodes (r : s) to the left of column j.
Column j is accessed many times, while each supernode (r : s) is used only once. In practice,
the number of nonzero elements in column j is much less than that in the updating supernodes.
Therefore, the access pattern given by this loop provides little opportunity to reuse cached data.
In particular, the same supernode (r : s) may be needed to update both columns j and j + 1.
But when we factor the (j+1)th column (in the next iteration of the outer loop), we will have to
fetch supernode (r : s) again from memory, instead of from cache (unless the supernodes are small
compared to the cache).

Panels

To exploit memory locality, we factor several columns (say w of them) at a time in the outer loop,
so that one updating supernode (r : s) can be used to update as many of the w columns as possible.
We refer to these w consecutive columns as a panel to differentiate them from a supernode, the
row structures of these columns may not be correlated in any fashion, and the boundaries between
panels may be different from those between supernodes. The new method requires rewriting the
doubly nested loop as the triple loop shown in Figure 5.13.

The structure of each sup-col update is the same as in the sup-col algorithm. For each supernode
(r : s) to the left of column j, if ukj 6= 0 for some r ≤ k ≤ s, then uij 6= 0 for all k ≤ i ≤ s.
Therefore, the nonzero structure of the panel of U consists of dense column segments that are
row-wise separated by supernodal boundaries, as in Figure 5.13. Thus, it is sufficient for the
symbolic factorization algorithm to record only the first nonzero position of each column segment.

74 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 5.13: The supernode-panel algorithm, with columnwise blocking. J = 1 : j − 1

Preface 75

As detailed in section 4.4, symbolic factorization is applied to all the columns in a panel at once,
over all the updating supernodes, before the numeric factorization step.

In dense factorization, the entire supernode-panel update in lines 3-7 of Figure 5.13 would
be implemented as two Level 3 BLAS calls: a dense triangular solve with w right-hand sides,
followed by a dense matrix-matrix multiply. In the sparse case, this is not possible, because the
different sup-col updates begin at different positions k within the supernode, and the submatrix
U(r : s, j : j + w − 1) is not dense. Thus the sparse supernode-panel algorithm still calls the Level
2 BLAS. However, we get similar cache benefits to those from the Level 3 BLAS, at the cost of
doing the loop reorganization ourselves. Thus we sometimes call the kernel of this algorithm a
”BLAS-21

2” method.

In the doubly nested loop (lines 3-7 of Figure 5.13), the ideal circumstance is that all w columns
in the panel require updates from supernode (r : s). Then this supernode will be used w times
before it is forced out of the cache. There is a trade-off between the value of w and the size of the
cache. For this scheme to work efficiently, we need to ensure that the nonzeros in the w columns do
not cause cache thrashing. That is, we must keep w small enough so that all the data accessed in
this doubly nested loop fit in cache. Otherwise, the cache interference between the source supernode
and the destination panel can offset the benefit of the new algorithm.

5.8 Efficient sparse matrix algorithms

5.8.1 Scalable algorithms

By a scalable algorithm for a problem, we mean one that maintains efficiency bounded away from
zero as the number p of processors grows and the size of the data structures grows roughly linearly
in p.

Notable efforts at analysis of the scalability of dense matrix computations include those of Li
and Coleman [58] for dense triangular systems, and Saad and Schultz [85]; Ostrouchov, et al. [73],
and George, Liu, and Ng [39] have made some analyses for algorithms that map matrix columns
to processors. Rothberg and Gupta [81] is a important paper for its analysis of the effect of caches
on sparse matrix algorithms.

Consider any distributed-memory computation. In order to assess the communication costs
analytically, it s useful to employ certain abstract lower bounds. Our model assumes that machine
topology is given. It assumes that memory consists of the memories local to processors. It assumes
that the communication channels are the edges of a given undirected graph G = (W, L), and
that processor–memory units are situated at some, possibly all, of the vertices of the graph. The
model includes hypercube and grid-structured message-passing machines, shared-memory machines
having physically distributed memory (the Tera machine) as well as tree-structured machines like
a CM-5.

Let V ⊆ W be the set of all processors and L be the set of all communication links.

We assume identical links. Let β be the inverse bandwidth (slowness) of a link in seconds
per word. (We ignore latency in this model; most large distributed memory computations are
bandwidth limited.)

We assume that processors are identical. Let φ be the inverse computation rate of a processor
in seconds per floating-point operation. Let β0 be the rate at which a processor can send or receive
data, in seconds per word. We expect that β0 and β will be roughly the same.

A distributed-memory computation consists of a set of processes that exchange information by
sending and receiving messages. Let M be the set of all messages communicated. For m ∈ M ,

76 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

|m| denotes the number of words in m. Each message m has a source processor src(m) and a
destination processor dest(m), both elements of V .

For m ∈ M , let d(m) denote the length of the path taken by m from the source of the message
m to its destination. We assume that each message takes a certain path of links from its source to
its destination processor. Let p(m) = (`1, `2, . . . , `d(m)) be the path taken by message m. For any
link ` ∈ L, let the set of messages whose paths utilize `, {m ∈ M | ` ∈ p(m)}, be denoted M(`).

The following are obviously lower bounds on the completion time of the computation. The first
three bounds are computable from the set of message M , each of which is characterized by its size
and its endpoints. The last depends on knowledge of the paths p(M) taken by the messages.

1. (Average flux)
∑

m∈M |m| · d(m)

|L| · β.

This is the total flux of data, measured in word-hops, divided by the machine’s total commu-
nication bandwidth, L/β.

2. (Bisection width) Given V0, V1 ⊆ W , V0 and V1 disjoint, define

sep(V0, V1) ≡ min |{L′ ⊆ L | L′ is an edge separator of V0 and V1}|

and

flux(V0, V1) ≡
∑

{m∈M | src(m)∈Vi,dest(m)∈V1−i}
|m| .

The bound is
flux(V0, V1)

sep(V0, V1)
· β.

This is the number of words that cross from one part of the machine to the other, divided by
the bandwidth of the wires that link them.

3. (Arrivals/Departures (also known as node congestion))

max
v∈V

∑

dest(m) = v

|m|β0;

max
v∈V

∑

src(m) = v

|m|β0.

This is a lower bound on the communication time for the processor with the most traffic into
or out of it.

4. (Edge contention)

max
`∈L

∑

m∈M(`)

|m|β.

This is a lower bound on the time needed by the most heavily used wire to handle all its
traffic.

Preface 77

Of course, the actual communication time may be greater than any of the bounds. In particular,
the communication resources (the wires in the machine) need to be scheduled. This can be done
dynamically or, when the set of messages is known in advance, statically. With detailed knowledge
of the schedule of use of the wires, better bounds can be obtained. For the purposes of analysis
of algorithms and assignment of tasks to processors, however, we have found this more realistic
approach to be unnecessarily cumbersome. We prefer to use the four bounds above, which depend
only on the integrated (i.e. time-independent) information M and, in the case of the edge-contention
bound, the paths p(M). In fact, in the work below, we won’t assume knowledge of paths and we
won’t use the edge contention bound.

5.8.2 Cholesky factorization

We’ll use the techniques we’ve introduced to analyze alternative distributed memory implemen-
tations of a very important computation, Cholesky factorization of a symmetric, positive definite
(SPD) matrix A. The factorization is A = LLT where L is lower triangular; A is given, L is to be
computed.

The algorithm is this:

1. L := A
2. for k = 1 to N do

3. Lkk :=
√

Lkk

4. for i = k + 1 to N do

5. Lik := LikL
−1
kk

6. for j = k + 1 to N do

7. for i = j to N do

8. Lij := Lij − LikL
T
jk

We can let the elements Lij be scalars, in which case this is the usual or “point” Cholesky algorithm.
Or we can take Lij to be a block, obtained by dividing the rows into contiguous subsets and making
the same decomposition of the columns, so that diagonal blocks are square. In the block case, the
computation of

√
Lkk (Step 3) returns the (point) Cholesky factor of the SPD block Lkk. If A is

sparse (has mostly zero entries) then L will be sparse too, although less so than A. In that case,
only the non-zero entries in the sparse factor L are stored, and the multiplication/division in lines
5 and 8 are omitted if they compute zeros.

Mapping columns

Assume that the columns of a dense symmetric matrix of order N are mapped to processors
cyclically: column j is stored in processor map(j) ≡ j mod p. Consider communication costs on
two-dimensional grid or toroidal machines. Suppose that p is a perfect square and that the machine
is a

√
p × √

p grid. Consider a mapping of the computation in which the operations in line 8 are
performed by processor map(j). After performing the operations in line 5, processor map(k) must
send column k to all processors {map(j) | j > k}.

Let us fix our attention on 2D grids. There are L = 2p+O(1) links. A column can be broadcast
from its source to all other processors through a spanning tree of the machine, a tree of total length
p reaching all the processors. Every matrix element will therefore travel over p − 1 links, so the
total information flux is (1/2)N 2p and the average flux bound is (1/4)N 2β.

78 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Type of Bound Lower bound

Arrivals 1
4N2β0

Average flux 1
4N2β

Table 5.1: Communication Costs for Column-Mapped Full Cholesky.

Type of Bound Lower bound

Arrivals 1
4N2β

(
1
pr

+ 1
pc

)

Edge contention N2β
(

1
pr

+ 1
pc

)

Table 5.2: Communication Costs for Torus-Mapped Full Cholesky.

Only O(N2/p) words leave any processor. If N � p, processors must accept almost the whole
(1/2)N2 words of L as arriving columns. The bandwidth per processor is β0, so the arrivals bound
is (1/2)N2β0 seconds. If N ≈ p the bound drops to half that, (1/4)N 2β0 seconds. We summarize
these bounds for 2D grids in Table 5.1.

We can immediately conclude that this is a nonscalable distributed algorithm. We may not
take p > Nφ

β and still achieve high efficiency.

Mapping blocks

Dongarra, Van de Geijn, and Walker [26] have shown that on the Intel Touchstone Delta ma-
chine (p = 528), mapping blocks is better than mapping columns in LU factorization. In such a
mapping, we view the machine as an pr × pc grid and we map elements Aij and Lij to processor
(mapr(i), mapc(j)). We assume a cyclic mappings here: mapr(i) ≡ i mod pr and similarly for
mapc.

The analysis of the preceding section may now be done for this mapping. Results are summarized
in Table 5.2. With pr and pc both O(

√
p), the communication time drops like O(p−1/2). With this

mapping, the algorithm is scalable even when β � φ. Now, with p = O(N 2), both the compute
time and the communication lower bounds agree; they are O(N). Therefore, we remain efficient
when storage per processor is O(1). (This scalable algorithm for distributed Cholesky is due to
O’Leary and Stewart [72].)

5.8.3 Distributed sparse Cholesky and the model problem

In the sparse case, the same holds true. To see why this must be true, we need only observe
that most of the work in sparse Cholesky factorization takes the form of the factorization of dense
submatrices that form during the Cholesky algorithm. Rothberg and Gupta demonstrated this fact
in their work in 1992 – 1994.

Unfortunately, with naive cyclic mappings, block-oriented approaches suffer from poor balance

Preface 79

of the computational load and modest efficiency. Heuristic remapping of the block rows and columns
can remove load imbalance as a cause of inefficiency.

Several researchers have obtained excellent performance using a block-oriented approach, both
on fine-grained, massively-parallel SIMD machines [23] and on coarse-grained, highly-parallel
MIMD machines [82]. A block mapping maps rectangular blocks of the sparse matrix to pro-
cessors. A 2-D mapping views the machine as a 2-D pr × pc processor grid, whose members are
denoted p(i, j). To date, the 2-D cyclic (also called torus-wrap) mapping has been used: block Lij

resides at processor p(i mod pr, j mod pc). All blocks in a given block row are mapped to the same
row of processors, and all elements of a block column to a single processor column. Communication
volumes grow as the square root of the number of processors, versus linearly for the 1-D mapping;
2-D mappings also asymptotically reduce the critical path length. These advantages accrue even
when the underlying machine has some interconnection network whose topology is not a grid.

A 2-D cyclic mapping, however, produces significant load imbalance that severely limits achieved
efficiency. On systems (such as the Intel Paragon) with high interprocessor communication band-
width this load imbalance limits efficiency to a greater degree than communication or want of
parallelism.

An alternative, heuristic 2-D block mapping succeeds in reducing load imbalance to a point
where it is no longer the most serious bottleneck in the computation. On the Intel Paragon the
block mapping heuristic produces a roughly 20% increase in performance compared with the cyclic
mapping.

In addition, a scheduling strategy for determining the order in which available tasks are per-
formed adds another 10% improvement.

5.8.4 Parallel Block-Oriented Sparse Cholesky Factorization

In the block factorization approach considered here, matrix blocks are formed by dividing the
columns of the n × n matrix into N contiguous subsets, N ≤ n. The identical partitioning is
performed on the rows. A block Lij in the sparse matrix is formed from the elements that fall
simultaneously in row subset i and column subset j.

Each block Lij has an owning processor. The owner of Lij performs all block operations that
update Lij (this is the “owner-computes” rule for assigning work). Interprocessor communication
is required whenever a block on one processor updates a block on another processor.

Assume that the processors can be arranged as a grid of pr rows and pc columns. In a Cartesian
product (CP) mapping, map(i, j) = p(RowMap(i), ColMap(j)), where RowMap : {0..N − 1} →
{0..pr − 1}, and ColMap : {0..N − 1} → {0..pc − 1} are given mappings of rows and columns
to processor rows and columns. We say that map is symmetric Cartesian (SC) if pr = pc and
RowMap = ColMap. The usual 2-D cyclic mapping is SC.2

5.9 Load balance with cyclic mapping

Any CP mapping is effective at reducing communication. While the 2-D cyclic mapping is CP,
unfortunately it is not very effective at balancing computational load. Experiment and analysis
show that the cyclic mapping produces particularly poor load balance; moreover, some serious
load balance difficulties must occur for any SC mapping. Improvements obtained by the use of
nonsymmetric CP mappings are discussed in the following section.

2See [82] for a discussion of domains, portions of the matrix mapped in a 1-D manner to further reduce commu-
nication.

80 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

0 2 4 6 8 10 12
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MATRIX NUMBER

E
F

F
IC

IE
N

C
Y

 A
N

D
 L

O
A

D
 B

A
LA

N
C

E

x efficiency, P=64

* balance, P=64

+ efficiency, P=100

o balance, P=100

Figure 5.14: Efficiency and overall balance on the Paragon system (B = 48).

Our experiments employ a set of test matrices including two dense matrices (DENSE1024 and
DENSE2048), two 2-D grid problems (GRID150 and GRID300), two 3-D grid problems (CUBE30
and CUBE35), and 4 irregular sparse matrices from the Harwell-Boeing sparse matrix test set
[27]. Nested dissection or minimum degree orderings are used. In all our experiments, we choose
pr = pc =

√
P , and we use a block size of 48. All Mflops measurements presented here are computed

by dividing the operation counts of the best known sequential algorithm by parallel runtimes. Our
experiments were performed on an Intel Paragon, using hand-optimized versions of the Level-3
BLAS for almost all arithmetic.

5.9.1 Empirical Load Balance Results

We now report on the efficiency and load balance of the method. Parallel efficiency is given by
tseq/(P · tpar), where tpar is the parallel runtime, P is the number of processors, and tseq is the
runtime for the same problem on one processor. For the data we report here, we measured tseq

by factoring the benchmark matrices using our parallel algorithm on one processor. The overall
balance of a distributed computation is given by worktotal/(P · workmax), where worktotal is the
total amount of work performed in the factorization, P is the number of processors, and workmax

is the maximum amount of work assigned to any processor. Clearly, overall balance is an upper
bound on efficiency.

Figure 1 shows efficiency and overall balance with the cyclic mapping. Observe that load
balance and efficiency are generally quite low, and that they are well correlated. Clearly, load
balance alone is not a perfect predictor of efficiency. Other factors limit performance. Examples
include interprocessor communication costs, which we measured at 5% — 20% of total runtime, long
critical paths, which can limit the number of block operations that can be performed concurrently,
and poor scheduling, which can cause processors to wait for block operations on other processors
to complete. Despite these disparities, the data indicate that load imbalance is an important
contributor to reduced efficiency.

We next measured load imbalance among rows of processors, columns of processors, and di-
agonals of processors. Define work[i, j] to be the runtime due to updating of block Lij by
its owner. To approximate runtime, we use an empirically calibrated estimate of the form
work = operations + ω · block-operations; on the Paragon, ω = 1, 000.

Define RowWork[i] to be the aggregate work required by blocks in row i: RowWork[i] =
∑N−1

j=0 work[i, j]. An analogous definition applies for ColWork, the aggregate column work. Define

Preface 81

0 2 4 6 8 10 12
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MATRIX NUMBER

LO
A

D
 B

A
LA

N
C

E

+ row bal.

x col bal.

o diag bal.

* overall bal.

Figure 5.15: Efficiency bounds for 2-D cyclic mapping due to row, column and diagonal imbalances
(P = 64, B = 48).

row balance by worktotal/pr · workrowmax, where workrowmax = maxr
∑

i:RowMap[i]=r RowWork[i].
This row balance statistic gives the best possible overall balance (and hence efficiency), obtained
only if there is perfect load balance within each processor row. It isolates load imbalance due to an
overloaded processor row caused by a poor row mapping. An analogous expression gives column
balance, and a third analogous expression gives diagonal balance. (Diagonal d is made up of the
set of processors p(i, j) for which (i − j) mod pr = d.) While these three aggregate measures of
load balance are only upper bounds on overall balance, the data we present later make it clear that
improving these three measures of balance will in general improve the overall load balance.

Figure 2 shows the row, column, and diagonal balances with a 2-D cyclic mapping of the
benchmark matrices on 64 processors. Diagonal imbalance is the most severe, followed by row
imbalance, followed by column imbalance.

These data can be better understood by considering dense matrices as examples (although the
following observations apply to a considerable degree to sparse matrices as well). Row imbalance
is due mainly to the fact that RowWork[i], the amount of work associated with a row of blocks,
increases with increasing i. More precisely, since work[i, j] increases linearly with j and the number
of blocks in a row increases linearly with i, it follows that RowWork[i] increases quadratically in i.
Thus, the processor row that receives the last block row in the matrix receives significantly more
work than the processor row immediately following it in the cyclic ordering, resulting in significant
row imbalance. Column imbalance is not nearly as severe as row imbalance. The reason, we believe,
is that while the work associated with blocks in a column increases linearly with the column number
j, the number of blocks in the column decreases linearly with j. As a result, ColWork[j] is neither
strictly increasing nor strictly decreasing. In the experiments, row balance is indeed poorer than
column balance. Note that the reason for the row and column imbalance is not that the 2-D cyclic
mapping is an SC mapping; rather, we have significant imbalance because the mapping functions
RowMap and ColMap are each poorly chosen.

To better understand diagonal imbalance, one should note that blocks on the diagonal of the
matrix are mapped exclusively to processors on the main diagonal of the processor grid. Blocks
just below the diagonal are mapped exclusively to processors just below the main diagonal of the
processor grid. These diagonal and sub-diagonal blocks are among the most work-intensive blocks in
the matrix. In sparse problems, moreover, the diagonal blocks are the only ones that are guaranteed
to be dense. (For the two dense test matrices, diagonal balance is not significantly worse than row
balance.) The remarks we make about diagonal blocks and diagonal processors apply to any SC

82 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

mapping, and do not depend on the use of a cyclic function RowMap(i) = i mod pr.

5.10 Heuristic Remapping

Nonsymmetric CP mappings, which map rows independently of columns, are a way to avoid diag-
onal imbalance that is automatic with SC mappings. We shall choose the row mapping RowMap
to maximize the row balance, and independently choose ColMap to maximize column balance.
Since the row mapping has no effect on the column balance, and vice versa, we may choose the row
mapping in order to maximize row balance independent of the choice of column mapping.

The problems of determining RowMap and ColMap are each cases of a standard NP-complete
problem, number partitioning [36], for which a simple heuristic is known to be good 3. This
heuristic obtains a row mapping by considering the block rows in some predefined sequence. For
each processor row, it maintains the total work for all blocks mapped to that row. The algorithm
iterates over block rows, mapping a block row to the processor row that has received the least work
thus far. We have experimented with several different sequences, the two best of which we now
describe.

The Decreasing Work (DW) heuristic considers rows in order of decreasing work. This is a
standard approach to number partitioning; that small values toward the end of the sequence allow
the algorithm to lessen any imbalance caused by large values encountered early in the sequence.

The Increasing Depth (ID) heuristic considers rows in order of increasing depth in the
elimination tree. In a sparse problem, the work associated with a row is closely related to its depth
in the elimination tree.

The effect of these schemes is dramatic. If we look at the three aggregate measures of load
balance, we find that these heuristics produce row and column balance of 0.98 or better, and
diagonal balance of 0.93 or better, for test case BCSSTK31, which is typical. With ID as the row
mapping we have produced better than a 50% improvement in overall balance, and better than
a 20% improvement in performance, on average over our test matrices, with P = 100. The DW
heuristic produces only slightly less impressive improvements The choice of column mapping, as
expected, is less important. In fact, for our test suite, the cyclic column mapping and ID row
mapping gave the best mean performance. 4

We also applied these ideas to four larger problems: DENSE4096, CUBE40, COPTER2 (a
helicopter rotor blade model, from NASA) and 10FLEET (a linear programming formulation of
an airline fleet assignment problem, from Delta Airlines). On 144 and 196 processors the heuristic
(increasing depth on rows and cyclic on columns) again produces a roughly 20% performance
improvement over a cyclic mapping. Peak performance of 2.3 Gflops for COPTER2 and 2.7 Gflops
for 10FLEET were achieved; for the model problems CUBE40 and DENSE4096 the speeds were
3.2 and 5.2 Gflops.

In addition to the heuristics described so far, we also experimented with two other approaches
to improving factorization load balance. The first is a subtle modification of the original heuristic.
It begins by choosing some column mapping (we use a cyclic mapping). This approach then iterates
over rows of blocks, mapping a row of blocks to a row of processors so as to minimize the amount
of work assigned to any one processor . Recall that the earlier heuristic attempted to minimize the
aggregate work assigned to an entire row of processors. We found that this alternative heuristic
produced further large improvements in overall balance (typically 10-15% better than that of our

3Number partitioning is a well studied NP-complete problem. The objective is to distribute a set of numbers
among a fixed number of bins so that the maximum sum in any bin is minimized.

4Full experimental data has appeared in another paper [83].

Preface 83

original heuristic). Unfortunately, realized performance did not improve. This result indicates
that load balance is not the most important performance bottleneck once our original heuristic is
applied.

A very simple alternate approach reduces imbalance by performing cyclic row and column
mappings on a processor grid whose dimensions pc and pr are relatively prime; this reduces diagonal
imbalance. We tried this using 7× 9 and 9× 11 processor grids (using one fewer processor that for
our earlier experiments with P = 64 and P = 100.) The improvement in performance is somewhat
lower than that achieved with our earlier remapping heuristic (17% and 18% mean improvement
on 63 and 99 processors versus 20% and 24% on 64 and 100 processors). On the other hand, the
mapping needn’t be computed.

5.11 Scheduling Local Computations

The next questions to be addressed, clearly, are: (i) what is the most constraining bottleneck after
our heuristic is applied, and (ii) can this bottleneck be addressed to further improve performance?

One potential remaining bottleneck is communication. Instrumentation of our block factoriza-
tion code reveals that on the Paragon system, communication costs account for less than 20% of
total runtime for all problems, even on 196 processors. The same instrumentation reveals that most
of the processor time not spent performing useful factorization work is spent idle, waiting for the
arrival of data.

We do not believe that the idle time is due to insufficient parallelism. Critical path analysis for
problem BCSSTK15 on 100 processors, for example, indicates that it should be possible to obtain
nearly 50% higher performance than we are currently obtaining. The same analysis for problem
BCSSTK31 on 100 processors indicates that it should be possible to obtain roughly 30% higher
performance. We therefore suspected that the scheduling of tasks by our code was not optimal.

To that end we tried alternative scheduling policies. They are:
FIFO. Tasks are initiated in the order in which the processor discovers that they are ready.
Destination depth. Ready tasks initiated in order of the destination block’s elimination tree

depth.
Source depth. Ready tasks initiated in order of the source block’s elimination tree depth.
For the FIFO policy, a queue of ready tasks is used, while for the others, a heap is used. We

experimented with 64 processors, using BSCCST31, BCSSTK33, and DENSE2048. Both priority-
based schemes are better than FIFO; destination depth seems slightly better than source depth. We
observed a slowdown of 2% due to the heap data structure on BCSSTK33; the destination priority
scheme then improved performance by 15% for a net gain of 13%. For BSCCST31 the net gain
was 8%. For DENSE2048, however, there was no gain. This improvement is encouraging. There
may be more that can be achieved through the pursuit of a better understanding of the scheduling
question.

84 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Lecture 6

Parallel Machines

A parallel computer is a connected configuration of processors and memories. The choice space
available to a computer architect includes the network topology, the node processor, the address-
space organization, and the memory structure. These choices are based on the parallel computation
model, the current technology, and marketing decisions.

No matter what the pace of change, it is impossible to make intelligent decisions about parallel
computers right now without some knowledge of their architecture. For more advanced treatment of
computer architecture we recommend Kai Hwang’s Advanced Computer Architecture and Parallel

Computer Architecture by Gupta, Singh, and Culler.

One may gauge what architectures are important today by the Top500 Supercomputer1 list
published by Meuer, Strohmaier, Dongarra and Simon. The secret is to learn to read between the
lines. There are three kinds of machines on The November 2003 Top 500 list:

• Distributed Memory Multicomputers (MPPs)

• Constellation of Symmetric Multiprocessors (SMPs)

• Clusters (NOWs and Beowulf cluster)

Vector Supercomputers, Single Instruction Multiple Data (SIMD) Machines and SMPs are no
longer present on the list but used to be important in previous versions.

How can one simplify (and maybe grossly oversimplify) the current situation? Perhaps by
pointing out that the world’s fastest machines are mostly clusters. Perhaps it will be helpful to the
reader to list some of the most important machines first sorted by type, and then by highest rank
in the top 500 list. We did this in 1997 and also 2003.

1http://www.top500.org

85

86 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Top 500
Machine First Rank

(1996)

Distributed Memory

Hitachi/Tsukuba CP-PACS 1
Fujitsu NWT 2
Hitachi SR2201 3
Intel XP/S 4
Cray T3D 7
Fujitsu VPP500 8
IBM SP2 14
TMC CM-5 21
Hitachi S-3800 56
Intel Delta 120
Parsytec GC Power Plus 230
Meiko CS-2 438
IBM 9076 486
KSR2-80 491

Top 500
Machine First Rank

(1996)

SMP Arrays

SGI Power Challenge Array 95

SMP

SGI Origin 2000 211
Convex SPP1200 264
SGI Power Challenge 288
Digital AlphaServer 8400 296

Vector Machines

NEC SX 17
Cray YMP 54

SIMD Machines

TMC CM-200 196

Preface 87

Top 500
Machine First Rank

(2003)

Cluster

ASCI Q - HP AlphaServer
SC45 2

X - Selfmade Apple G5
Cluster 3

Tungsten - Dell PowerEdge
Cluster 4

Mpp2 - HP Integrity rx2600
Itanium2 Cluster 5

Lightning - Linux Networx
Opteron Cluster 6

MCR Linux Xeon Cluster 7
IBM/Quadrics xSeries

Xeon Cluster 10
PSC - HP AlphaServer

SC45 12
Legend DeepComp 6800

Itanium Cluster 14
CEA - HP AlphaServer

SC45 15
Aspen Systems Dual

Xeon Cluster 17
IBM xSeries Xeon

Cluster 22
HP Integrity

rx5670-4x256 25
Dell-Cray PowerEdge

1750 Cluster 26

Top 500
Machine First Rank

(2003)

Distributed Memory (MPPs)

NEC Earth-Simulator 1
IBM ASCI White 8
IBM Seaborg SP Power3 9
NCAR - IBM pSeries 690 Turbo 13
HPCx - IBM pSeries 690 Turbo 16
NAVOCEANO - IBM pSeries

690 Turbo 18
US Govt. Cray X1 19
ORNL - Cray X1 20
Cray Inc. Cray X1 21
ECMWF - IBM pSeries 690 Turbo 23
ECMWF - IBM pSeries 690 Turbo 24
Intel - ASCI Red 27
ORNL - IBM pSeries 690 Turbo 28
IBM Canada pSeries 690 Turbo 29

Canstellation of SMPs

Fujitsu PRIMEPOWER HPC2500 11
NEC SX-5/128M8 88
HP Integrity Superdome/HFabric 117
Sun Fire 15k/6800 Cluster 151

The trend is clear to anyone who looks at the list. Distributed memory machines are on the way
out and cluster computers are now the dominant force in supercomputers.

Distributed Memory Multicomputers:

Remembering that a computer is a processor and memory, really a processor with cache and
memory, it makes sense to call a set of such “computers” linked by a network a multicomputer.
Figure 6.1 shows 1) a basic computer which is just a processor and memory and also 2) a fancier
computer where the processor has cache, and there is auxiliary disk memory. To the right, we
picture 3) a three processor multicomputer. The line on the right is meant to indicate the network.

These machines are sometimes called distributed memory multiprocessors. We can further
distinguish between DMM’s based on how each processor addresses memory. We call this the
private/shared memory issue:

Private versus shared memory on distributed memory machines: It is easy
to see that the simplest architecture allows each processor to address only its own

88 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

���

���

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

P C M D

���

���

��

��

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�����
�����
�����
�����
�����
�����
�����

���

���

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����

P M1)

2)

3) P C M

P C M

P C M

Figure 6.1: 1) A computer 2) A fancier computer 3)A multicomputer

memory. When a processor wants to read data from another processor’s memory, the
owning processor must send the data over the network to the processor that wants it.
Such machines are said to have private memory. A close analog is that in my office, I
can easily find information that is located on my desk (my memory) but I have to make
a direct request via my telephone (ie., I must dial a phone number) to find information
that is not in my office. And, I have to hope that the other person is in his or her office,
waiting for the phone to ring. In other words, I need the co-operation of the other
active party (the person or processor) to be able to read or write information located
in another place (the office or memory).

The alternative is a machine in which every processor can directly address every in-
stance of memory. Such a machine is said to have a shared address space, and sometimes
informally shared memory, though the latter terminology is misleading as it may easily
be confused with machines where the memory is physically shared. On a shared address
space machine, each processor can load data from or store data into the memory of any
processor, without the active cooperation of that processor. When a processor requests
memory that is not local to it, a piece of hardware intervenes and fetches the data over
the network. Returning to the office analogy, it would be as if I asked to view some
information that happened to not be in my office, and some special assistant actually
dialed the phone number for me without my even knowing about it, and got a hold of
the special assistant in the other office, (and these special assistants never leave to take
a coffee break or do other work) who provided the information.

Most distributed memory machines have private addressing. One notable exception
is the Cray T3D and the Fujitsu VPP500 which have shared physical addresses.

Clusters (NOWs and Beowulf Cluster):

Clusters are built from independent computers integrated through an after-market network. The

Preface 89

idea of providing COTS (Commodity off the shelf) base systems to satisfy specific computational
requirements evolved as a market reaction to MPPs with the thought the cost might be cheaper.
Clusters were considered to have slower communications compared to the specialized machines but
they have caught up fast and now outperform most specialized machines.

NOWs stands for Network of Workstations. Any collection of workstations is likely to be
networked together: this is the cheapest way for many of us to work on parallel machines given
that the networks of workstations already exist where most of us work.

The first Beowulf cluster was built by Thomas Sterling and Don Becker at the Goddard Space
Flight Center in Greenbelt Maryland, which is a cluster computer consisting of 16 DX4 processors
connected by Ethernet. They named this machine Beowulf (a legendary Geatish warrior and hero
of the Old English poem Beowulf). Now people use “Beowulf cluster” to denote a cluster of PCs
or workstations interconnected by a private high-speed network, which is dedicated to running
high-performance computing tasks. Beowulf clusters usually run a free-software operating system
like Linux or FreeBSD, though windows Beowulfs exist.

Central Memory Symmetric Multiprocessors (SMPs) and Constellation of SMPs:

Notice that we have already used the word “shared” to refer to the shared address space possible
in in a distributed memory computer. Sometimes the memory hardware in a machine does not
obviously belong to any one processor. We then say the memory is central, though some authors
may use the word “shared.” Therefore, for us, the central/distributed distinction is one of system
architecture, while the shared/private distinction mentioned already in the distributed context
refers to addressing.

“Central” memory contrasted with distributed memory: We will view the
physical memory architecture as distributed if the memory is packaged with the pro-
cessors in such a way that some parts of the memory are substantially “farther” (in
the sense of lower bandwidth or greater access latency) from a processor than other
parts. If all the memory is nearly equally expensive to access, the system has central
memory. The vector supercomputers are genuine central memory machines. A network
of workstations has distributed memory.

Microprocessor machines known as symmetric multiprocessors (SMP) are becoming typical now
as mid-sized compute servers; this seems certain to continue to be an important machine design.
On these machines each processor has its own cache while the main memory is central. There is
no one “front-end” or “master” processor, so that every processor looks like every other processor.
This is the “symmetry.” To be precise, the symmetry is that every processor has equal access to
the operating system. This means, for example, that each processor can independently prompt the
user for input, or read a file, or see what the mouse is doing.

The microprocessors in an SMP themselves have caches built right onto the chips, so these
caches act like distributed, low-latency, high-bandwidth memories, giving the system many of the
important performance characteristics of distributed memory. Therefore if one insists on being
precise, it is not all of the memory that is central, merely the main memory. Such systems are said
to have non-uniform memory access (NUMA).

A big research issue for shared memory machines is the cache coherence problem. All fast
processors today have caches. Suppose the cache can contain a copy of any memory location in
the machine. Since the caches are distributed, it is possible that P2 can overwrite the value of x
in P2’s own cache and main memory, while P1 might not see this new updated value if P1 only

90 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

���

���

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

P P

P P
C C

CC

M

B

BB

B

Figure 6.2: A four processor SMP (B denotes the bus between the central memory and the proces-
sor’s cache

looks at its own cache. Coherent caching means that when the write to x occurs, any cached copy
of x will be tracked down by the hardware and invalidated – i.e. the copies are thrown out of their
caches. Any read of x that occurs later will have to go back to its home memory location to get
its new value. Maintenance of cache coherence is expensive for scalable shared memory machines.
Today, only the HP Convex machine has scalable, cache coherent, shared memory. Other vendors
of scalable, shared memory systems (Kendall Square Research, Evans and Sutherland, BBN) have
gone out of the business. Another, Cray, makes a machine (the Cray T3E) in which the caches can
only keep copies of local memory locations.

SMPs are often thought of as not scalable (performance peaks at a fairly small number of pro-
cessors), because as you add processors, you quickly saturate the bus connecting the memory to
the processors.

Whenever anybody has a collection of machines, it is always natural to try to hook them up
together. Therefore any arbitrary collection of computers can become one big distributed com-
puter. When all the nodes are the same, we say that we have a homogeneous arrangement. It has
recently become popular to form high speed connections between SMPs, known as Constellations
of SMPs or SMP arrays. Sometimes the nodes have different architectures creating a heterogeneous
situation. Under these circumstances, it is sometimes necessary to worry about the explicit format
of data as it is passed from machine to machine.

SIMD machines:
In the late 1980’s, there were debates over SIMD versus MIMD. (Either pronounced as SIM-
dee/MIM-dee or by reading the letters es-eye-em-dee/em-eye-em-dee.) These two acronyms coined
by Flynn in his classification of machines refer to Single Instruction Multiple Data and Mul-
tiple Instruction Multiple Data. The second two letters, “MD” for multiple data, refer to the
ability to work on more than one operand at a time. The “SI” or “MI” refer to the ability of a
processor to issue instructions of its own. Most current machines are MIMD machines. They are

Preface 91

built from microprocessors that are designed to issue instructions on their own. One might say that
each processor has a brain of its own and can proceed to compute anything it likes independent of
what the other processors are doing. On a SIMD machine, every processor is executing the same
instruction, an add say, but it is executing on different data.

SIMD machines need not be as rigid as they sound. For example, each processor had the ability
to not store the result of an operation. This was called em context. If the contest was false, the
result was not stored, and the processor appeared to not execute that instruction. Also the CM-2
had the ability to do indirect addressing, meaning that the physical address used by a processor to
load a value for an add, say, need not be constant over the processors.

The most important SIMD machines were the Connection Machines 1 and 2 produced by
Thinking Machines Corporation, and the MasPar MP-1 and 2. The SIMD market received a
serious blow in 1992, when TMC announced that the CM-5 would be a MIMD machine.

Now the debates are over. MIMD has won. The prevailing theory is that because of the
tremendous investment by the personal computer industry in commodity microprocessors, it will
be impossible to stay on the same steep curve of improving performance using any other proces-
sor technology. “No one will survive the attack of the killer micros!” said Eugene Brooks of the
Lawrence Livermore National Lab. He was right. The supercomputing market does not seem to
be large enough to allow vendors to build their own custom processors. And it is not realistic
or profitable to build an SIMD machine out of these microprocessors. Furthermore, MIMD is
more flexible than SIMD; there seem to be no big enough market niches to support even a single
significant vendor of SIMD machines.

A close look at the SIMD argument:
In some respects, SIMD machines are faster from the communications viewpoint. They
can communicate with minimal latency and very high bandwidth because the processors
are always in synch. The Maspar was able to do a circular shift of a distributed array,
or a broadcast, in less time than it took to do a floating point addition. So far as we
are aware, no MIMD machine in 1996 has a latency as small as the 24 µsec overhead
required for one hop in the 1988 CM-2 or the 8 µsec latency on the Maspar MP-2.

Admitting that certain applications are more suited to SIMD than others, we were
among many who thought that SIMD machines ought to be cheaper to produce in that
one need not devote so much chip real estate to the ability to issue instructions. One
would not have to replicate the program in every machine’s memory. And communi-
cation would be more efficient in SIMD machines. Pushing this theory, the potentially
fastest machines (measured in terms of raw performance if not total flexibility) should
be SIMD machines. In its day, the MP-2 was the world’s most cost-effective machine,
as measured by the NAS Parallel Benchmarks. These advantages, however, do not seem
to have been enough to overcome the relentless, amazing, and wonderful performance
gains of the “killer micros”.

Continuing with the Flynn classification (for historical purposes) Single Instruction Single
Data or SISD denotes the sequential (or Von Neumann) machines that are on most of our desktops
and in most of our living rooms. (Though most architectures show some amount of parallelism at
some level or another.) Finally, there is Multiple Instruction Single Data or MISD, a class
which seems to be without any extant member although some have tried to fit systolic arrays into
this ill-fitting suit.

There have also been hybrids; the PASM Project (at Purdue University) has investigated the
problem of running MIMD applications on SIMD hardware! There is, of course, some performance

92 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

penalty.

Vector Supercomputers:

A vector computer today is a central, shared memory MIMD machine in which every proces-
sor has some pipelined arithmetic units and has vector instructions in its repertoire. A vector
instruction is something like “add the 64 elements of vector register 1 to the 64 elements of vec-
tor register 2”, or “load the 64 elements of vector register 1 from the 64 memory locations at
addresses x, x + 10, x + 20, . . . , x + 630.” Vector instructions have two advantages: fewer instruc-
tions fetched, decoded, and issued (since one instruction accomplishes a lot of computation), and
predictable memory accesses that can be optimized for high memory bandwidth. Clearly, a single
vector processor, because it performs identical operations in a vector instruction, has some features
in common with SIMD machines. If the vector registers have p words each, then a vector processor
may be viewed as an SIMD machine with shared, central memory, having p processors.

Hardware Technologies and Supercomputing:

Vector supercomputes have very fancy integrated circuit technology (bipolar ECL logic, fast but
power hungry) in the processor and the memory, giving very high performance compared with other
processor technologies; however, that gap has now eroded to the point that for most applications,
fast microprocessors are within a factor of two in performance. Vector supercomputer processors
are expensive and require unusual cooling technologies. Machines built of gallium arsenide, or using
Josephson junction technology have also been tried, and none has been able to compete success-
fully with the silicon, CMOS (complementary, metal-oxide semiconductor) technology used in the
PC and workstation microprocessors. Thus, from 1975 through the late 1980s, supercomputers
were machines that derived their speed from uniprocessor performance, gained through the use of
special hardware technologies; now supercomputer technology is the same as PC technology, and
parallelism has become the route to performance.

6.0.1 More on private versus shared addressing

Both forms of addressing lead to difficulties for the programmer. In a shared address system,
the programmer must insure that any two processors that access the same memory location do
so in the correct order: for example, processor one should not load a value from location N until
processor zero has stored the appropriate value there (this is called a “true” or “flow” dependence);
in another situation, it may be necessary that processor one not store a new value into location
N before processor zero loads the old value (this is an “anti” dependence); finally, if multiple
processors write to location N, its final value is determined by the last writer, so the order in
which they write is significant (this is called “output” dependence). The fourth possibility, a load
followed by another load, is called an “input” dependence, and can generally be ignored. Thus, the
programmer can get incorrect code do to “data races”. Also, performance bugs due to too many
accesses to the same location (the memory bank that holds a given location becomes the sequential
bottleneck) are common. 2

The big problem created by private memory is that the programmer has to distribute the data.
“Where’s the matrix?” becomes a key issue in building a LINPACK style library for private memory

2It is an important problem of the “PRAM” model used in the theory of parallel algorithms that it does not
capture this kind of performance bug, and also does not account for communication in NUMA machines.

Preface 93

machines. And communication cost, whenever there is NUMA, is also a critical issue. It has been
said that the three most important issues in parallel algorithms are “locality, locality, and locality”.3

One factor that complicates the discussion is that a layer of software, at the operating system
level or just above it, can provide virtual shared addressing on a private address machine by using
interrupts to get the help of an owning processor when a remote processor wants to load or store
data to its memory. A different piece of software can also segregate the shared address space of a
machine into chunks, one per processor, and confine all loads and stores by a processor to its own
chunk, while using private address space mechanisms like message passing to access data in other
chunks. (As you can imagine, hybrid machines have been built, with some amount of shared and
private memory.)

6.0.2 Programming Model

The programming model used may seem to be natural for one style of machine; data parallel
programming seems to be a SIMD shared memory style, and message passing seems to favor
distributed memory MIMD.

Nevertheless, it is quite feasible to implement data parallelism on distributed memory MIMD
machines. For example, on the Thinking Machines CM-5, a user can program in CM-Fortran an
array data parallel language, or program in node programs such as C and Fortran with message
passing system calls, in the style of MIMD computing. We will discuss the pros and cons of SIMD
and MIMD models in the next section when we discuss parallel languages and programming models.

6.0.3 Machine Topology

The two things processors need to do in parallel machines that they do not do when all alone
are communication (with other processors) and coordination (again with other processors). Com-
munication is obviously needed: one computes a number that the other requires, for example.
Coordination is important for sharing a common pool of resources, whether they are hardware
units, files, or a pool of work to be performed. The usual mechanisms for coordination, moreover,
involve communication.

Parallel machines differ in their underlying hardware for supporting message passing and data
routing.

In a shared memory parallel machine, communication between processors is achieved by access
to common memory locations. Access to the common memory is supported by a switch network
that connects the processors and memory modules. The set of proposed switch network for shared
parallel machines includes crossbars and multistage networks such as the butterfly network. One
can also connect processors and memory modules by a bus, and this is done when the number of
processors is limited to ten or twenty.

An interconnection network is normally used to connect the nodes of a multicomputer as well.
Again, the the network topology varies from one machine to another. Due to technical limitations,
most commercially used topologies are of small node degree. Commonly used network topologies
include (not exclusively) linear arrays, ring, hierarchical rings, two or three dimension grids or tori,
hypercubes, fat trees.

The performance and scalability of a parallel machine in turn depend on the network topology.
For example, a two dimensional grid of p nodes has diameter

√
p, on the other hand, the diameter

of a hypercube or fat tree of p nodes is log p. This implies that the number of physical steps to

3For those too young to have suffered through real estate transactions, the old adage in that business is that the
three most important factors in determining the value of a property are “location, location, and location”.

94 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

send a message from a processor to its most distant processor is
√

p and log p, respectively, for
2D grid and hypercube of p processors. The node degree of a 2D grid is 4, while the degree of a
hypercube is log p. Another important criterion for the performance of a network topology is its
bisection bandwidth, which is the minimum communication capacity of a set of links whose removal
partitions the network into two equal halves. Assuming unit capacity of each direct link, a 2D and
3D grid of p nodes has bisection bandwidth

√
p and p2/3 respectively, while a hypercube of p nodes

has bisection bandwidth Θ(p/ log p). (See FTL page 394)

There is an obvious cost / performance trade-off to make in choosing machine topology. A
hypercube is much more expensive to build than a two dimensional grid of the same size. An
important study done by Bill Dally at Caltech showed that for randomly generated message traffic,
a grid could perform better and be cheaper to build. Dally assumed that the number of data
signals per processor was fixed, and could be organized into either four “wide” channels in a grid
topology or log n “narrow” channels (in the first hypercubes, the data channels were bit-serial) in
a hypercube. The grid won, because too the average utilization of the hypercube channels was
too low: the wires, probably the most critical resource in the parallel machine, were sitting idle.
Furthermore, the work on routing technology at Caltech and elsewhere in the mid 80’s resulted in a
family of hardware routers that delivered messages with very low latency even though the length of
the path involved many “hops” through the machines. For the earliest multicomputers used “store
and forward” networks, in which a message sent from A through B to C was copied into and out
of the memory of the intermediate node B (and any others on the path): this causes very large
latencies that grew in proportion to the number of hops. Later routers, including those used in
todays networks, have a “virtual circuit” capability that avoids this copying and results in small
latencies.

Does topology make any real difference to the performance of parallel machines in practice?
Some may say “yes” and some may say “no”. Due to the small size (less than 512 nodes) of
most parallel machine configurations and large software overhead, it is often hard to measure the
performance of interconnection topologies at the user level.

6.0.4 Homogeneous and heterogeneous machines

Another example of cost / performance trade-off is the choice between tightly coupled parallel
machines and workstation clusters, workstations that are connected by fast switches or ATMs. The
networking technology enables us to connect heterogeneous machines (including supercomputers)
together for better utilization. Workstation clusters may have better cost/efficient trade-offs and
are becoming a big market challenger to “main-frame” supercomputers.

A parallel machine can be homogeneous or heterogeneous. A homogeneous parallel machine uses
identical node processors. Almost all tightly coupled supercomputers are homogeneous. Worksta-
tion clusters may often be heterogeneous. The Cray T3D is in some sense a heterogeneous parallel
system which contains a vector parallel computer C90 as the front end and the massively parallel
section of T3D. (The necessity of buying the front-end was evidently not a marketing plus: the
T3E does not need one.) A future parallel system may contains a cluster of machines of various
computation power from workstations to tightly coupled parallel machines. The scheduling prob-
lem will inevitably be much harder on a heterogeneous system because of the different speed and
memory capacity of its node processors.

More than 1000 so called supercomputers have been installed worldwide. In US, parallel ma-
chines have been installed and used at national research labs (Los Almos National Laboratory,
Sandia National Labs, Oak Ridge National Laboratory, Lawrence Livermore National Laboratory,
NASA Ames Research Center, US Naval Research Laboratory, DOE/Battis Atomic Power Labora-

Preface 95

tory, etc) supercomputing centers (Minnesota Supercomputer Center, Urbana-Champaign NCSA,
Pittsburgh Supercomputing Center, San Diego Supercomputer Center, etc) US Government, and
commercial companies (Ford Motor Company, Mobil, Amoco) and major universities. Machines
from different supercomputing companies look different, are priced differently, and are named dif-
ferently. Here are the names and birthplaces of some of them.

• Cray T3E (MIMD, distributed memory, 3D torus, uses Digital Alpha microprocessors), C90
(vector), Cray YMP, from Cray Research, Eagan, Minnesota.

• Thinking Machine CM-2 (SIMD, distributed memory, almost a hypercube) and CM-5 (SIMD
and MIMD, distributed memory, Sparc processors with added vector units, fat tree) from
Thinking Machines Corporation, Cambridge, Massachusetts.

• Intel Delta, Intel Paragon (mesh structure, distributed memory, MIMD), from Intel Corpo-
rations, Beaverton, Oregon. Based on Intel i860 RISC, but new machines based on the P6.
Recently sold world’s largest computer (over 6,000 P6 processors) to the US Dept of Energy
for use in nuclear weapons stockpile simulations.

• IBM SP-1, SP2, (clusters, distributed memory, MIMD, based on IBM RS/6000 processor),
from IBM, Kingston, New York.

• MasPar, MP-2 (SIMD, small enough to sit next to a desk), by MasPar, Santa Clara, Califor-
nia.

• KSR-2 (global addressable memory, hierarchical rings, SIMD and MIMD) by Kendall Square,
Waltham, Massachusetts. Now out of the business.

• Fujitsu VPX200 (multi-processor pipeline), by Fujitsu, Japan.

• NEC SX-4 (multi-processor vector, shared and distributed memory), by NEC, Japan.

• Tera MTA (MPP vector, shared memory, multithreads, 3D torus), by Tera Computer Com-
pany, Seattle, Washington. A novel architecture which uses the ability to make very fast
context switches between threads to hide latency of access to the memory.

• Meiko CS-2HA (shared memory, multistage switch network, local I/O device), by Meiko
Concord, Massachusetts and Bristol UK.

• Cray-3 (gallium arsenide integrated circuits, multiprocessor, vector) by Cray Computer Cor-
poration, Colorado Spring, Colorado. Now out of the business.

6.0.5 Distributed Computing on the Internet and Akamai Network

Examples of distributed computing on the internet:

• seti@home: “a scientific experiment that uses Internet-connected computers to downloads and
analyzes radio telescope data”. When we input this item, its performance is 26.73 Teraflops
per second.

• Distributed.net: to use the idle processing time of its thousands member computers to solve
computationally intensive problems. Its computing power now is equivalent to that of “more
than 160000 PII 266MHz computers”.

96 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

• Parabon: recycle computer’s idle time for bioinformatic computations.

• Google Compute: Runs as part of the Google Toolbar within a user’s browser. Detects spare
cycles on the machine and puts them to use solving scientific problems selected by Google.

Akamai Network consists of thousands servers spread globally that cache web pages and route
traffic away from congested areas. This idea was originated by Tom Leighton and Danny Lewin at
MIT.

Lecture 7

FFT

7.1 FFT

The Fast Fourier Transform is perhaps the most important subroutine in scientific computing. It
has applications ranging from multiplying numbers and polynomials to image and signal processing,
time series analysis, and the solution of linear systems and PDEs. There are tons of books on the
subject including two recent worderful ones by Charles van Loand and Briggs.

The discrete Fourier transform of a vector x is y = Fnx, where Fn is the n×n matrix whose entry
(Fn)jk = e−2πijk/n, j, k = 0 . . . n − 1. It is nearly always a good idea to use 0 based notation (as
with the C programming language) in the context of the discrete Fourier transform. The negative
exponent corresponds to Matlab’s definition. Indeed in matlab we obtain fn=fft(eye(n)).

A good example is

F4 =








1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i








.

Sometimes it is convenient to denote (Fn)jk = ωjk
n , where ωn = e−2π/n.

The Fourier matrix has more interesting properties than any matrix deserves to have. It is
symmetric (but not Hermitian). It is Vandermonde (but not ill-conditioned). It is unitary except
for a scale factor (1√

n
Fn is unitary). In two ways the matrix is connected to group characters: the

matrix itself is the character table of the finite cyclic group, and the eigenvectors of the matrix are
determined from the character table of a multiplicative group.

The trivial way to do the Fourier transform is to compute the matrix-vector multiply requiring
n2 multipilications and roughly the same number of additions. Cooley and Tukey gave the first
O(n log n) time algorithm (actually the algorithm may be found in Gauss’ work) known today as
the FFT algorithm. We shall assume that n = 2p.

The Fourier matrix has the simple property that if Πn is an unshuffle operation, then

FnΠT
n =

(

Fn/2 DnFn/2

Fn/2 −DnFn/2

)

, (7.1)

where Dn is the diagonal matrix diag(1, ωn, . . . , ω
n/2−1
n).

One DFT algorithm is then simply: 1) unshuffle the vector 2) recursively apply the FFT algo-
rithm to the top half and the bottom half, then combine elements in the top part with corresponding

elements in the bottom part (“the butterfly”) as prescribed by the matrix

(

I Dn

I −Dn

)

.

97

98 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Everybody has their favorite way to visualize the FFT algorithm. For us, the right way is to
think of the data as living on a hypercube. The algorithm is then, permute the cube, perform the
FFT on a pair of opposite faces, and then perform the butterfly, along edges across the dimension
connecting the opposite faces.

We now repeat the three steps of the recursive algorithm in index notation:

• Step 1: id−1 . . . i1i0 → i0id−1 . . . i1

• Step 2: i0id−1 . . . i1 → i0fft(id−1 . . . i1)

• Step 3: → ī0fft(id−1 . . . i1)

Here Step 1 is a data permutation, Step 2 refters to two FFTs, and Step 3 is the butterfly on
the high order bit.

In conventional notation:

yj = (Fnx)j =
n−1∑

k=0

ωjk
n xk

can be cut into the even and the odd parts:

yj =
m−1∑

k=0

ω2jk
n x2k + ωj

n

(
m−1∑

k=0

ω2jk
n x2k+1

)

;

since ω2
n = ωm, the two sums are just FFT(xeven) and FFT(xodd). With this remark (see Fig. 1),

yj =
∑m−1

k=0 ωjk
m x2k + ωj

n

(
∑m−1

k=0 ωjk
m x2k+1

)

yj+m =
∑m−1

k=0 ωjk
m x2k − ωj

n

(
∑m−1

k=0 ωjk
m x2k+1

)

.

Then the algorithm keeps recurring; the entire “communication” needed for an FFT on a vector of
length 8 can be seen in Fig. 2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
..
..
..
...
....
..........................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

............................
...
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
..
..
..
...
....
..........................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

............................
...
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

..

FFT(xeven)

ωj
nFFT(xodd)

+

−

yj

yj+m

Figure 7.1: Recursive block of the FFT.

The number of operations for an FFT on a vector of length n equals to twice the number for
an FFT on length n/2 plus n/2 on the top level. As the solution of this recurrence, we get that
the total number of operations is 1

2n log n.
Now we analyze the data motion required to perform the FFT. First we assume that to each

processor one element of the vector x is assigned. Later we discuss the “real-life” case when the
number of processors is less than n and hence each processor has some subset of elements. We also
discuss how FFT is implemented on the CM-2 and the CM-5.

The FFT always goes from high order bit to low order bit, i.e., there is a fundamental asymmetry
that is not evident in the figures below. This seems to be related to the fact that one can obtain
a subgroup of the cyclic group by alternating elements, but not by taking, say, the first half of the
elements.

Preface 99

..
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
..

..
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
..

..
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
..

..
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
..

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

...

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........

..........

..........

..........

..........

..........

..........

..........

..........

...
..
..
..
..

..
..
..
..
..

..
..
..
..
..

..
..
..
..
..

..
..
..
..
..

..
..
..
..
..

..
..
..
..
..

..
..
..
..
..

..
..
..
..
..

.

..........

..........

..........

..........

..........

..........

..........

..........

..........

...
..
..
..
..

..
..
..
..
..

..
..
..
..
..

..
..
..
..
..

..
..
..
..
..

..
..
..
..
..

..
..
..
..
..

..
..
..
..
..

..
..
..
..
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.x0

x1

x2

x3

x4

x5

x6

x7

y0

y4

y2

y6

y1

y5

y3

y7

Figure 7.2: FFT network for 8 elements. (Such a network is not built in practice)

7.1.1 Data motion

Let ipip−1 . . . i2i1i0 be a bit sequence. Let us call i0i1i2 . . . ip−1ip the bit reversal of this sequence.
The important property of the FFT network is that if the i-th input is assigned to the i-th pro-
cessor for i ≤ n, then the i-th output is found at the processor with address the bit-reverse of i.
Consequently, if the input is assigned to processors with bit-reversed order, then the output is in
standard order. The inverse FFT reverses bits in the same way.

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0
1
1

0 01
0 1

0
0 1

0
1
1

1
0

0
1

1
10

0

xxxxxxxx

xxxxxxxx

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

xxxxxxxx

xxxxxxxx

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0
1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.block pos

parity

inside pos

new block

previous

next
phase

phase
the i-th bit
becomes first

Figure 7.3: The output of FFT is in bit-reversed order.

To see why FFT reverses the bit order, let us have a look at the i-th segment of the FFT
network (Fig. 3). The input is divided into parts and the current input (top side) consists of FFT’s
of these parts. One “block” of the input consists of the same fixed output element of all the parts.
The i − 1 most significant bits of the input address determine this output element, while the least
significant bits the the part of the original input whose transforms are at this level.

The next step of the FFT computes the Fourier transform of twice larger parts; these consist

100 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 7.4: Left: more than one element per processor. Right: one box is a 4 × 4 matrix multiply.

of an “even” and an “odd” original part. Parity is determined by the i-th most significant bit.

Now let us have a look at one unit of the network in Fig. 1; the two inputs correspond to the
same even and odd parts, while the two outputs are the possible “farthest” vector elements, they
differ in the most significant bit. What happens is that the i-th bit jumps first and becomes most
significant (see Fig. 3).

Now let us follow the data motion in the entire FFT network. Let us assume that the i-th input
element is assigned to processor i. Then after the second step a processor with binary address
ipip−1ip−2 . . . i1i0 has the ip−1ipip−2 . . . i1i0-th data, the second bit jumps first. Then the third,
fourth, . . ., p-th bits all jump first and finally that processor has the i0i1i2 . . . ip−1ip-th output
element.

7.1.2 FFT on parallel machines

In a realistic case, on a parallel machine some bits in the input address are local to one processor.
The communication network can be seen in Fig. 4, left. FFT requires a large amount of commu-
nication; indeed it has fewer operations per communication than usual dense linear algebra. One
way to increase this ratio is to combine some layers into one, as in Fig. 4, right. If s consecutive
layers are combined, in one step a 2s × 2s matrix multiplication must be performed. Since matrix
multiplication vectorizes and usually there are optimized routines to do it, such a step is more
efficient than communicating all small parts. Such a modified algorithm is called the High Radix

FFT.

The FFT algorithm on the CM-2 is basically a High Radix FFT. However, on the CM-5 data
motion is organized in a different way. The idea is the following: if s bits of the address are local
to one processor, the last s phases of the FFT do not require communication. Let 3 bits be local
to one processor, say. On the CM-5 the following data rearrangement is made: the data from the

ipip−1ip−2 . . . i3|i2i1i0 -th

Preface 101

processor is moved to the
i2i1i0ip−3ip−4 . . . i3|ipip−1ip−2 -th!

This data motion can be arranged in a clever way; after that the next 3 steps are local to processors.
Hence the idea is to perform all communication at once before the actual operations are made.

[Not yet written: The six step FFT]
[Not yet written: FFTW]
[Good idea: Use the picture in our paper first to illustrate the notation]

7.1.3 Exercises

1. Verify equation (??).

2. Just for fun, find out about the FFT through Matlab.

We are big fans of the phone command for those students who do not already have a good
physical feeling for taking Fourier transforms. This command shows (and plays if you have
a speaker!) the signal generated when pressing a touch tone telephone in the United States
and many other countries. In the old days, when a pushbutton phone was broken apart, you
could see that pressing a key depressed one lever for an entire row and another lever for an
entire column. (For example, pressing 4 would depress the lever corresponding to the second
row and the lever corresponding to the first column.)

To look at the FFT matrix, in a way, plot(fft(eye(7)));axis(’square’).

3. In Matlab use the flops function to obtain a flops count for FFT’s for different power of 2
size FFT’s. Make you input complex. Guess a flop count of the form a+bn+c log n+dn log n.
Remembering that Matlab’s \ operator solves least squares problems, find a, b, c and d. Guess
whether Matlab is counting flops or using a formula.

7.2 Matrix Multiplication

Everyone thinks that to multiply two 2-by-2 matrices requires 8 multiplications. However, Strassen
gave a method, which requires only 7 multiplications! Actually, compared to the 8 multiplies and
4 adds of the traditional way, Strassen’s method requires only 7 multiplies but 18 adds. Nowadays
when multiplication of numbers is as fast as addition, this does not seem so important. However
when we think of block matrices, matrix multiplication is very slow compared to addition. Strassen’s
method will give an O(n2.8074) algorithm for matrix multiplication, in a recursive way very similar
to the FFT.

First we describe Strassen’s method for two block matrices:
(

A1,1 A1,2

A2,1 A2,2

)

×
(

B1,1 B1,2

B2,1 B2,2

)

=

(
P1 + P4 − P5 + P7 P3 + P5

P2 + P4 P1 + P3 − P2 + P6

)

where

P1 = (A1,1 + A1,2)(B1,1 + B2,2) ,

P2 = (A2,1 + A2,2)B1,1 ,

P3 = A1,1(B1,2 − B2,2) ,

P4 = A2,2(B2,1 − B1,1) ,

P5 = (A1,1 + A1,2)B2,2 ,

102 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

P6 = (A2,1 − A1,1)(B1,1 + B1,2) ,

P7 = (A1,2 − A2,2)(B2,1 + B2,2) .

If, as in the FFT algorithm, we assume that n = 2p, the matrix multiply of two n-by-n matrices
calls 7 multiplications of (n/2)-by-(n/2) matrices. Hence the time required for this algorithm is
O(nlog2 7) = O(n2.8074). Note that Strassen’s idea can further be improved (of course, with the loss
that several additions have to be made and the constant is impractically large) the current such
record is an O(n2.376)-time algorithm.

A final note is that, again as in the FFT implementations, we do not recur and use Strassen’s
method with 2-by-2 matrices. For some sufficient p, we stop when we get 2p × 2p matrices and use
direct matrix multiply which vectorizes well on the machine.

7.3 Basic Data Communication Operations

We conclude this section by list the set of basic data communication operations that are commonly
used in a parallel program.

• Single Source Broadcast:

• All-to-All Broadcast:

• All-to-All Personalized Communication:

• Array Indexing or Permutation: There are two types of array indexing: the left array
indexing and the right array indexing.

• Polyshift: SHIFT and EOSHIFT.

• Sparse Gather and Scatter:

• Reduction and Scan:

Lecture 8

Domain Decomposition

Domain decomposition is a term used by at least two different communities. Literally, the words
indicate the partitioning of a region. As we will see in Chapter ?? of this book, an important
computational geometry problem is to find good ways to partition a region. This is not what we
will discuss here.

In scientific computing, domain decomposition refers to the technique of solving partial differ-
ential equations using subroutines that solve problems on subdomains. Originally, a domain was
a contiguous region in space, but the idea has generalized to include any useful subset of the dis-
cretization points. Because of this generalization, the distinction between domain decomposition
and multigrid has become increasingly blurred.

Domain decomposition is an idea that is already useful on serial computers, but it takes on a
greater importance when one considers a parallel machine with, say, a handful of very powerful
processors. In this context, domain decomposition is a parallel divide-and-conquer approach to
solving the PDE.

To guide the reader, we quickly summarize the choice space that arises in the domain decom-
position literature. As usual a domain decomposition problem starts as a continuous problem on a
region and is disretized into a finite problem on a discrete domain.

We will take as our model problem the solution of the elliptic equation ∇2u = f , where on
a region Ω which is the union of at least subdomains Ω1 and Ω2. ∇2 is the Laplacian operator,
defined by ∇2u = ∂2u

∂x2 + ∂2u
∂y2 . Domain decomposition ideas tend to be best developed for elliptic

problems, but may be applied in more general settings.

103

104 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Ω ΩΣ Σσ σ1 21 22 1

Figure 8.1: Example domain of circle and square with overlap

Ω

Ω←→ nn

1

2

21

Figure 8.2: Domain divided into two subdomains without overlap

Ω
Ω

Ω2

3

1
4

5Ω
Ω

Figure 8.3: Example domain with many overlapping regions

Preface 105

Domain Decomposition Outline

1. Geometric Issues

Overlapping or non-overlapping regions

Geometric Discretization

Finite Difference or Finite Element

Matching or non-matching grids

2. Algorithmic Issues

Algebraic Discretization

Schwarz Approaches: Additive vs. Multiplicative

Substructuring Approaches

Accelerants

Domain Decomposition as a Preconditioner

Course (Hierarchical/Multilevel) Domains

3. Theoretical Considerations

8.1 Geometric Issues

The geometric issues in domain decomposition are 1) how are the domains decomposed into subre-
gions, and 2) how is the region discretized using some form of grid or irregular mesh. We consider
these issues in turn.

8.1.1 Overlapping vs. Non-overlapping regions

So as to emphasize the issue of overlap vs. non-overlap, we can simplify all the other issues by
assuming that we are solving the continuous problem (no discretization) exactly on each domain
(no choice of algorithm). The reader may be surprised to learn that domain decomposition methods
divide neatly into either being overlapping or nonoverlapping methods. Though one can find much
in common between these two methods, they are really rather different in flavor. When there is
overlap, the methods are sometimes known as Schwarz methods, while when there is no overlap,
the methods are sometimes known as substructuring. (Historically, the former name was used in
the continuous case, and the latter in the discrete case, but this historical distinction has been, and
even should be, blurred.)

We begin with the overlapping region illustrated in Figure 8.1. Schwarz in 1870 devised an
obvious alternating procedure for solving Poisson’s equation ∇2u = f :

1. Start with any guess for u2 on σ1.

2. Solve ∇2u1 = f on Ω1 by taking u1 = u2 on σ1. (i.e. solve in the square using boundary data
from the interior of the circle)

3. Solve ∇2u2 = f on Ω2 by taking u2 = u1 on σ2 (i.e. solve in the circle using boundary data
from the interior of the square)

4. Goto 2 and repeat until convergence is reached

106 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

The procedure above is illustrated in Figure 8.4.
One of the characteristics of elliptic PDE’s is that the solution at every point depends on global

conditions. The information transfer between the regions clearly occurs in the overlap region.
If we “choke” the transfer of information by considering the limit as the overlap area tends to

0, we find ourselves in a situation typified by Figure 8.2. The basic Schwarz procedure no longer
works. Do you see why? No matter what the choice of data on the interface, it would not be
updated. The result would be that the solution would not be differentiable along the interface. An
example is given in Figure 8.5.

One approach to solving the non-overlapped problem is to concentrate directly on the domain of
intersection. Let g be a current guess for the solution on the interface. We can then solve ∇2u = f
on Ω1 and Ω2 independently using the value of g as Dirichlet conditions on the interface. We can
define the map

T : g → ∂g

∂n1
+

∂g

∂n2
.

This is an affine map from functions on the interface to functions on the interface defined by taking
a function to the jump in the derivative. The operator T is known as the Steklov-Poincaré operator.

Suppose we can find the exact solution to Tg = 0. We would then have successfully decoupled
the problem so that it may be solved independently into the two domains Ω1 and Ω2. This is a
“textbook” illustration of the divide and conquer method, in that solving Tg = 0 constitutes the
“divide.”

8.1.2 Geometric Discretization

In the previous section we contented ourselves with formulating the problem on a continuous
domain, and asserted the existence of solutions either to the subdomain problems in the Schwarz
case, or the Stekhlov-Poincaré operator in the continuous case.

Of course on a real computer, a discretization of the domain and a corresponding discretization
of the equation is needed. The result is a linear system of equations.

Finite Differences or Finite Elements

Finite differences is actually a special case of finite elements, and all the ideas in domain decom-
position work in the most general context of finite elements. In finite differences, one typically
imagines a square mesh. The prototypical example is the five point stencil for the Laplacian in
two dimensions. Using this stencil, the continuous equation ∂2u

∂x2 + ∂2u
∂y2 = f(x, y) is transformed to

a linear system of equations of the form:

− 1

h2
(−ui

E + 2ui − ui
W) − 1

h2
(−ui

N + 2ui − ui
S) = 4fi

where for each ui, ui
E is the element to the right of ui, ui

W is to the left of ui, ui
N is above ui,

and ui
S is below ui. An analog computer to solve this problem would consist of a grid of one

ohm resistors. In finite elements, the protypical example is a triangulation of the region, and the
appropriate formulation of the PDE on these elements.

Matching vs. Non-matching grids

When solving problems as in our square-circle example of Figure 8.1, it is necessary to discretize the
interior of the regions with either a finite difference style grid or a finite element style mesh. The
square may be nicely discretized by covering it with Cartesian graph-paper, while the circle may

Preface 107

���������

�������
	

���������

Figure 8.4: Schwarz’ alternating procedure

108 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

−0.5 0 0.5
1−0.5

0

0.5

0

0.1

0.2

0.3

0.4

0.5

Figure 8.5: Incorrect solution for non-overlaped problem. The result is not differentiable along the
boundary between the two regions.

be more conveniently discretized by covering it with polar graph paper. Under such a situation,
the grids do not match, and it becomes necessary to transfer points interior to Ω2 to the boundary
of Ω1 and vice versa. Figure 8.6 shows an example domain with non-mathing grids. Normally, grid
values are interpolated for this kind of grid line up pattern.

8.2 Algorithmic Issues

Once the domain is discretized, numerical algorithms must be formulated. There is a definite line
drawn between Schwarz (overlapping) and substructuring (non-overlapping) approaches.

Figure 8.6: Example domain discretized into non-matching grids

Preface 109

8.2.1 Classical Iterations and their block equivalents

Let us review the basic classical methods for solving PDE’s
on a discrete domain.

1. Jacobi - At step n, the neighboring values used are from step n − 1
Using Jacobi to solve the system Au=f requires using repeated applications of the iteration:

ui
(n+1) = ui

n +
1

aii
[fi −

∑

j 6=i

aijuj
(n)] ∀ i

2. Gauss-Seidel - Values at step n are used if available, otherwise the values are used from step
n − 1
Gauss-Seidel uses applications the iteration:

ui
(n+1) = ui

n +
1

aii
[fi −

∑

j<i

aijuj
(n+1) −

∑

j>i

aijuj
(n)] ∀ i

3. Red Black Ordering - If the grid is a checkerboard, solve all red points in parallel using black
values at n − 1, then solve all black points in parallel using red values at step n For the
checkerboard, this corresponds to the pair of iterations:

ui
(n+1) = ui

n +
1

aii
[fi −

∑

j 6=i

aijuj
(n)] ∀ i even

ui
(n+1) = ui

n +
1

aii
[fi −

∑

j 6=i

aijuj
(n+1)] ∀ i odd

Analogous block methods may be used on a domain that is decomposed into a number of multiple
regions. Each region is thought of as an element used to solve the larger problem. This is known
as block Jacobi, or block Gauss-Seidel.

1. Block Gauss-Seidel - Solve each region in series using the boundary values at n if available.

2. Block Jacobi - Solve each region on a separate processor in parallel and use boundary values
at n − 1. (Additive scheme)

3. Block coloring scheme - Color the regions so that like colors do not touch and solve all regions
with the same color in parallel. (Multiplicative scheme)

The block Gauss-Seidel algorithm is called a multiplicative scheme for reasons to be explained
shortly. In a corresponding manner, the block Jacobi scheme is called an additive scheme.

8.2.2 Schwarz approaches: additive vs. multiplicative

A procedure that alternates between solving an equation in Ω1 and then Ω2 does not seem to be
parallel at the highest level because if processor 1 contains all of Ω1 and processor 2 contains all
of Ω2 then each processor must wait for the solution of the other processor before it can execute.
Figure 8.4 illustrates this procedure. Such approaches are known as multiplicative approaches
because of the form of the operator applied to the error. Alternatively, approaches that allow for
the solution of subproblems simultaneously are known as additive methods. The latter is illustrated
in Figure 8.7. The difference is akin to the difference between Jacobi and Gauss-Seidel.

110 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

���������

�������
	

���������

Figure 8.7: Schwarz’ alternating procedure (additive)

Preface 111

Overlapping regions: A notational nightmare?

When the grids match it is somewhat more convenient to express the discretized PDE as a simple
matrix equation on the gridpoints.

Unfortunately, we have a notational difficulty at this point. It is this difficulty that is probably
the single most important reason that domain decomposition techniques are not used as extensively
as they can be. Even in the two domain case, the difficulty is related to the fact that we have domains
1 and 2 that overlap each other and have internal and external boundaries. By setting the boundary
to 0 we can eliminate any worry of external boundaries. I believe there is only one reasonable way
to keep the notation manageable. We will use subscripts to denote subsets of indices. d1 and d2

will represent those nodes in domain 1 and domain 2 respectively. b1 and b2 will represent those
notes in the boundary of 1 and 2 respectively that are not external to the entire domain.

Therefore ud1 denotes the subvector of u consisting of those elements interior to domain 1, while
Au1,b1 is the rectangular subarray of A that map the interior of domain 1 to the internal boundary
of domain 1. If we were to write uT as a row vector, the components might break up as follows
(the overlap region is unusually large for emphasis:)

-� �-d1 b1

-��- d2b2

Correspondingly, the matrix A (which of course would never be written down) has the form

The reader should find Ab1,b1 etc., on this picture. To further simplify notation, we write 1 and
2 for d1 and d2,1b and 2b for b1 and b2, and also use only a single index for a diagonal block of a
matrix (i.e. A1 = A11).

Now that we have leisurely explained our notation, we may return to the algebra. Numerical
analysts like to turn problems that may seem new into ones that they are already familiar with. By
carefully writing down the equations for the procedure that we have described so far, it is possible
to relate the classical domain decomposition method to an iteration known as Richardson iteration.
Richardson iteration solves Au = f by computing uk+1 = uk + M(f − Auk), where M is a “good”
approximation to A−1. (Notice that if M = A−1, the iteration converges in one step.)

112 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Problem Domain

Ω1

Ω2I

Figure 8.8: Problem Domain

The iteration that we described before may be written algebraically as

A1u
k+1/2
1 + A1,1b

uk
1b

= f1

A2u
k+1
2 + A2,2b

u
k+1/2
2b

= f2

Notice that values of uk+1/2 updated by the first equation, specifically the values on the boundary
of the second region, are used in the second equation.

With a few algebraic manipulations, we have

u
k+1/2
1 = uk−1

1 + A−1
1 (f − Auk−1)1

uk+1
2 = u

k+1/2
2 + A−1

2 (f − Auk+1/2)2

This was already obviously a Gauss-Seidel like procedure, but those of you familiar with the alge-
braic form of Gauss-Seidel might be relieved to see the form here.

A roughly equivalent block Jacobi method has the form

u
k+1/2
1 = uk−1

1 + A−1
1 (f − Auk−1)1

uk
2 = u

k+1/2
2 + A−1

2 (f − Auk)2

It is possible to eliminate uk+1/2 and obtain

uk+1 = uk + (A−1
1 + A−1

2)(f − Auk),

where the operators are understood to apply to the appropriate part of the vectors. It is here that
we see that the procedure we described is a Richardson iteration with operator M = A−1

1 + A−1
2 .

8.2.3 Substructuring Approaches

Figure 8.8 shows an example domain of a problem for a network of resistors or a discretized region
in which we wish to solve the Poisson equation, 52v = g. We will see that the discrete version of
the Steklov-Poincaré operator has its algebraic equivalent in the form of the Schur complement.

Preface 113

In matrix notation, Av = g, where

A =






A1 0 A1I

0 A2 A2I

AI1 AI2 AI






One of the direct methods to solve the above equation is to use LU or LDU factorization. We
will do an analogous procedure with blocks. We can rewrite A as,

A =






I 0 0
0 I 0

AI1A
−1
1 AI2A

−1
2 I











I 0 0
0 I 0
0 0 S











A1 0 A1I

0 A2 A2I

0 0 I






where,

S = AI − AI1A
−1
1 A1I − AI2A

−1
2 A2I

We really want A−1

A−1 =






A−1
1 0 −A−1

1 A1I

0 A−1
2 −A−1

2 A2I

0 0 I











I 0 0
0 I 0
0 0 S−1











I 0 0
0 I 0

−AI1A
−1
1 −AI2A

−1
2 I




 (8.1)

Inverting S turns out to be the hardest part.

A−1






VΩ1

VΩ2

VInterface






→ V oltages in region Ω1

→ V oltages in region Ω2

→ V oltages at interface

Let us examine Equation 8.1 in detail.

In the third matrix,
A−1

1 - Poisson solve in Ω1

AI1 - is putting the solution onto the interface
A−1

2 - Poisson solve in Ω2

AI2 - is putting the solution onto the interface

In the second matrix,
Nothing happening in domain 1 and 2
Complicated stuff at the interface.

In the first matrix we have,
A−1

1 - Poisson solve in Ω1

A−1
2 - Poisson solve in Ω2

A−1
1 A1I and A−1

2 A1I - Transferring solution to interfaces

In the above example we had a simple 2D region with neat squares but in reality we might have
to solve on complicated 3D regions which have to be divided into tetrahedra with 2D regions at
the interfaces. The above concepts still hold.

114 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Getting to S−1,

(

a b
c d

)

=

(

1 0
c/a 1

)(

a b
0 d − bc/a

)

where, d − bc/a is the Schur complement of d.

In Block form (

A B
C D

)

=

(

1 0
CA−1 1

)(

A B
0 D − CA−1B

)

We have
S = AI − AI1A

−1
1 A1I − AI2A

−1
2 A2I

Arbitrarily break AI as
AI = A1

I + A2
I

Think of A as





A1 0 A1I

0 0 0
AI1 0 A1

I




+






0 0 0
0 A2 A2I

0 AI2 A2
I






Schur Complements are

S1 = A1
I − AI1A

−1
1 A1I

S2 = A2
I − AI2A

−1
2 A2I

and
S = S1 + S2

A−1
1 → Poisson solve on Ω1

A−1
2 → Poisson solve on Ω2

AI1 Ω1 → I
A21 Ω2 → I
A1I I → Ω1

A2I I → Ω2

Sv - Multiplying by the Schur Complement involves 2 Poisson solves and some cheap transfer-
ring.

S−1v should be solved using Krylov methods. People have recommended the use of S−1
1 or S−1

2

or (S−1
1 + S−1

2) as a preconditioner

8.2.4 Accellerants

Domain Decomposition as a Preconditioner

It seems wasteful to solve subproblems extremely accurately during the early stages of the algorithm
when the boundary data is likely to be fairly inaccurate. Therefore it makes sense to run a few
steps of an iterative solver as a preconditioner for the solution to the entire problem.

In a modern approach to the solution of the entire problem, a step or two of block Jacobi
would be used as a preconditioner in a Krylov based scheme. It is important at this point not to

Preface 115

lose track what operations may take place at each level. To solve the subdomain problems, one
might use multigrid, FFT, or preconditioned conjugate gradient, but one may choose to do this
approximately during the early iterations. The solution of the subdomain problems itself may serve
as a preconditioner to the solution of the global problem which may be solved using some Krylov
based scheme.

The modern approach is to use a step of block Jacobi or block Gauss-Seidel as a preconditioner
for use in a Krylov space based subsolver. There is not too much point in solving the subproblems
exactly on the smaller domains (since the boundary data is wrong) just an approximate solution
suffices → domain decomposition preconditioning

Krylov Methods - Methods to solve linear systems : Au=g . Examples have names such
as the Conjugate Gradient Method, GMRES (Generalized Minimum Residual), BCG (Bi Conju-
gate Gradient), QMR (Quasi Minimum Residual), CGS (Conjugate Gradient Squared). For this
lecture, one can think of these methods in terms of a black-box. What is needed is a subroutine
that given u computes Au. This is a matrix-vector multiply in the abstract sense, but of course
it is not a dense matrix-vector product in the sense one practices in undergraduate linear algebra.
The other needed ingredient is a subroutine to approximately solve the system. This is known as a
preconditioner. To be useful this subroutine must roughly solve the problem quickly.

Course (Hierarchical/Multilevel) Techniques

These modern approaches are designed to greatly speed convergence by solving the problem on dif-
ferent sized grids with the goal of communicating information between subdomains more efficiently.
Here the “domain” is a course grid. Mathematically, it is as easy to consider a contiguous domain
consisting of neighboring points, as it is is to consider a course grid covering the whole region.

Up until now, we saw that subdividing a problem did not directly yield the final answer, rather it
simplified or allowed us to change our approach in tackling the resulting subproblems with existing
methods. It still required that individual subregions be composited at each level of refinement to
establish valid conditions at the interface of shared boundaries.

Multilevel approaches solve the problem using a coarse grid over each sub-region, gradually
accommodating higher resolution grids as results on shared boundaries become available. Ideally
for a well balanced multi-level method, no more work is performed at each level of the hierarchy
than is appropriate for the accuracy at hand.

In general a hierarchical or multi-level method is built from an understanding of the difference
between the damping of low frequency and high components of the error. Roughly speaking one
can kill of low frequency components of the error on the course grid, and higher frequency errors
on the fine grid.

Perhaps this is akin to the Fast Multipole Method where p poles that are “well-separated” from
a given point could be considered as clusters, and those nearby are evaluated more precisely on a
finer grid.

8.3 Theoretical Issues

This section is not yet written. The rough content is the mathematical formulation that identifies
subdomains with projection operators.

116 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 8.9: MIT domain

8.4 A Domain Decomposition Assignment: Decomposing MIT

Perhaps we have given you the impression that entirely new codes must be written for parallel
computers, and furthermore that parallel algorithms only work well on regular grids. We now show
you that this is not so.

You are about to solve Poisson’s equation on our MIT domain:
Notice that the letters MIT have been decomposed into 32 rectangles – this is just the right

number for solving
∂2u

dx2
+

∂2u

dy2
= ρ(x, y)

on a 32 processor machine.
To solve the Poisson equation on the individual rectangles, we will use a FISHPACK library

routine. (I know the French would cringe, but there really is a library called FISHPACK for solving
the Poisson equation.) The code is old enough (from the 70’s) but in fact it is too often used to
really call it dusty.

As a side point, this exercise highlights the ease of grabbing kernel routines off the network
these days. High quality numerical software is out there (bad stuff too). One good way to find it
is via the World Wide Web, at http://www.netlib.org. The software you will need for this problem
is found at http://www.netlib.org/netlib/fishpack/hwscrt.f.

All of the rectangles on the MIT picture have sides in the ratio 2 to 1; some are horizontal while
others are vertical. We have arbitrarily numbered the rectangles accoding to scheme below, you
might wish to write the numbers in the picture on the first page.

4 10 21 21 22 22 23 24 24 25 26 26 27

4 5 9 10 20 23 25 27

3 5 6 8 9 11 20 28

3 6 7 8 11 19 28

2 7 12 19 29

2 12 18 29

1 13 18 30

1 13 17 30

0 14 17 31

0 14 15 15 16 16 31

Preface 117

In our file neighbor.data which you can take from ~edelman/summer94/friday we have encoded
information about neighbors and connections. You will see numbers such as

1 0 0 0 0 0

4 0 0 0 0 0

0 0 0 0

0

This contains information about the 0th rectangle. The first line says that it has a neighbor 1. The
4 means that the neighbor meets the rectangle on top. (1 would be the bottom, 6 would be the
lower right.) We starred out a few entries towards the bottom. Figure out what they should be.

In the actual code (solver.f), a few lines were question marked out for the message passing.
Figure out how the code works and fill in the appropriate lines. The program may be compiled
with the makefile.

118 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Lecture 9

Particle Methods

9.1 Reduce and Broadcast: A function viewpoint

[This section is being rewritten with what we hope will be the world’s clearest explanation of the
fast multipole algorithm. Readers are welcome to take a quick look at this section, or pass to the
next section which leads up to the multipole algorithm through the particle method viewpoint]

Imagine we have P processors, and P functions f1(z), f2(z), . . . , fP (z), one per processor. Our
goal is for every processor to know the sum of the functions f(z) = f1(z) + . . . + fP (z). Really this
is no different from the reduce and broadcast situation given in the introduction.

As a practical question, how can functions be represented on the computer? Probably we should
think of Taylor series or multipole expansion. If all the Taylor series or multipole expansions are
centered at the same point, then the function reduction is easy. Simply reduce the corresponding
coefficients. If the pairwise sum consists of functions represented using different centers, then a
common center must be found and the functions must be transformed to that center before a
common sum may be found.

Example: Reducing Polynomials Imagine that processor i contains the polynomial
fi(z) = (z− i)3. The coefficients may be expanded out as fi(z) = a0 +a1z+a2z

2 +a3z
3.

Each processor i contains a vector (a0, a1, a2, a3). The sum of the vectors may be
obtained by a usual reduce algorithm on vectors.

An alternative that may seem like too much trouble at first is that every time we
make a pairwise sum we shift to a common midpoint (see Figure 9.1).

There is another complication that occurs when we form pairwise sums of functions. If the
expansions are multipole or Taylor expansions, we may shift to a new center that is outside the
region of convergence. The coefficients may then be meaningless. Numerically, even if we shift
towards the boundary of a region of convergence, we may well lose accuracy, especially since most
computations choose to fix the number of terms in the expansion to keep.

Difficulties with shifting multipole or Taylor Expansions

The fast multipole algorithm accounts for these difficulties in a fairly simple manner. Instead
of computing the sum of the functions all the way up the tree and then broadcasting back, it saves
the intermediate partial sums summing them in only when appropriate. The figure below indicates
when this is appropriate.

119

120 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

()a , a , a , a� � � �

f (z)� f (z)�

()a , a , a , a� � � 	

Figure 9.1: Pairwise Sum

9.2 Particle Methods: An Application

Imagine we want to model the basic mechanics of our solar system. We would probably start with
the sun, somehow representing its mass, velocity, and position. We might then add each of the nine
planets in turn, recording their own masses, velocities, and positions at a point in time. Let’s say
we add in a couple of hundred of the larger asteroids, and a few of our favorite comets. Now we set
the system in motion. Perhaps we would like to know where Pluto will be in a hundred years, or
whether a comet will hit us soon. To solve Newton’s equations directly with more than even two
bodies is intractably difficult. Instead we decide to model the system using discrete time intervals,
and computing at each time interval the force that each body exerts on each other, and changing
the velocities of the bodies accordingly. This is an example of an N-body problem. To solve the
problem in a simple way requires O(n2) time for each time step. With some considerable effort, we
can reduce this to O(n) (using the fast multipole algorithm to be described below). A relatively
simple algorithm the Barnes-Hut Algorithm, (to be described below) can compute movement in
O(n log(n)) time.

9.3 Outline

• Formulation and applications

• “The easiest part”: the Euler method to move bodies.

• Direct methods for force computation.

• Hierarchical methods (Barnes-Hut, Appel, Greengard and Rohklin)

9.4 What is N-Body Simulation?

We take n bodies (or particles) with state describing the initial position ~x1, ~x2, . . . , ~xn ∈ <k and
initial velocities ~v1, ~v2, . . . , ~vn ∈ <k.

We want to simulate the evolution of such a system, i.e., to compute the trajectories of each
body, under an interactive force: the force exerted on each body by the whole system at a given

Preface 121

Update configuration

Compute Force of Interaction

Collect statistical information

Figure 9.2: Basic Algorithm of N-body Simulation

point. For different applications we will have different interaction forces, such as gravitational or
Coulombic forces. We could even use these methods to model spring systems, although the advanced
methods, which assume forces decreasing with distance, do not work under these conditions.

9.5 Examples

• Astrophysics: The bodies are stars or galaxies, depending on the scale of the simulation.
The interactive force is gravity.

• Plasma Physics: The basic particles are ions, electrons, etc; the force is Coulombic.

• Molecular Dynamics: Particles are atoms or clusters of atoms; the force is electrostatic.

• Fluid Dynamics: Vortex method where particle are fluid elements (fluid blobs).

Typically, we call this class of simulation methods, the particle methods. In such simulations,
it is important that we choose both spatial and temporal scales carefully, in order to minimize
running time and maximize accuracy. If we choose a time scale too large, we can lose accuracy
in the simulation, and if we choose one too small, the simulations will take too long to run. A
simulation of the planets of the solar system will need a much larger timescale than a model of
charged ions. Similarly, spatial scale should be chosen to minimize running time and maximize
accuracy. For example, in applications in fluid dynamics, molecular level simulations are simply
too slow to get useful results in a reasonable period of time. Therefore, researchers use the vortex
method where bodies represent large aggregates of smaller particles. Hockney and Eastwood’s
book Computer Simulations Using Particles,, McGraw Hill (1981), explores the applications
of particle methods applications, although it is somewhat out of date.

9.6 The Basic Algorithm

Figure 9.2 illustrates the key steps in n-body simulation. The step of collecting statistical infor-
mation is application dependent, and some of the information gathered at this step may be used
during the next time interval.

122 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

We will use gravitational forces as an example to present N-body simulation algorithms. Assume
there are n bodies with masses m1, m2, . . . , mn, respectively, initially located at ~x1, ..., ~xn ∈ <3 with
velocity ~v1, ..., ~vn. The gravitational force exert on the ith body by the jth body is given by

~Fij = G
mimj

r2
= G

mimj

| ~xj − ~xi|3
(~xj − ~xi),

where G is the gravitational constant. Thus the total force on the ith body is the vector sum
of all these forces and is give by,

~Fi =
∑

j 6=i

~Fij .

Let ~ai = d~vi/dt be the acceleration of the body i, where where ~vi = d~xi/dt. By Newton’s second
law of motion, we have ~Fi = mi~ai = mid~vi/dt.

In practice, we often find that using a potential function V = φm will reduce the labor of
the calculation. First, we need to compute the potential due to the N-body system position, i.e.
x1, . . . , xn, at positions y1, . . . , yn.

The total potential is calculated as

Vi =
n∑

i,j=1;i6=j

φ(xi − yj)mj 1 ≤ i, j ≤ n,

where φ is the potential due to gravity. This can also be written in the matrix form:

V =






0 . . . (xi − yj)
.

φ(xj − yi) . . . 0






In <3,

φ(x) =
1

‖ x ‖
.
In <2,

φ(x) = log‖ x ‖

.

The update of particle velocities and positions are in three steps:

1. F = π · m;

2. Vnew = Vold + ∆t · F
m ;

3. xnew = xold + ∆t · Vnew.

The first step is the most expensive part in terms of computational time.

Preface 123

9.6.1 Finite Difference and the Euler Method

In general, the force calculation is the most expensive step for N-body simulations. We will present
several algorithms for this later on, but first assume we have already calculated the force ~Fi act-
ing one each body. We can use a numerical method (such as the Euler method) to update the
configuration.

To simulate the evolution of an N -body system, we decompose the time interval into discretized
time steps: t0, t1, t2, t3, For uniform discretizations, we choose a ∆t and let t0 = 0 and tk = k∆t.
The Euler method approximates the derivative by finite difference.

~ai(tk) = ~Fi/mi =
~vi(tk) − ~vi(tk − ∆t)

∆t

~vi(tk) =
~xi(tk + ∆t) − ~xi(tk)

∆t
,

where 1 ≤ i ≤ n. Therefore,

~vi(tk) = ~vi(tk−1) + ∆t(~Fi/mi) (9.1)

~xi(tk+1) = ~xi(tk) + ∆t~vi(tk). (9.2)

From the given initial configuration, we can derive the next time step configuration using the
formulae by first finding the force, from which we can derive velocity, and then position, and then
force at the next time step.

~Fi → vi(tk) → xi(tk + ∆t) → ~Fi+1.

High order numerical methods can be used here to improve the simulation. In fact, the Euler
method that uses uniform time step discretization performs poorly during the simulation when two
bodies are very close. We may need to use non-uniform discretization or a sophisticated time scale
that may vary for different regions of the N-body system.

In one region of our simulation, for instance, there might be an area where there are few bodies,
and each is moving slowly. The positions and velocities of these bodies, then, do not need to be
sampled as frequently as in other, higher activity areas, and can be determined by extrapolation.
See figure 9.3 for illustration.1

How many floating point operations (flops) does each step of the Euler method take? The
velocity update (step 1) takes 2n floating point multiplications and one addition and the position
updating (step 2) takes 1 multiplication and one addition. Thus, each Euler step takes 5n floating
point operations. In Big-O notation, this is an O(n) time calculation with a constant factor 5.

Notice also, each Euler step can be parallelized without communication overhead. In data
parallel style, we can express steps (1) and (2), respectively, as

V = V + ∆t(F/M)

X = X + ∆tV,

where V is the velocity array; X is the position array; F is the force array; and M is the mass
array. V, X, F, M are 3×n arrays with each column corresponding to a particle. The operator / is
the elementwise division.

1In figure 9.3 we see an example where we have some close clusters of bodies, and several relatively disconnected
bodies. For the purposes of the simulation, we can ignore the movement of relatively isolated bodies for short periods
of time and calculate more frames of the proximous bodies. This saves computation time and grants the simulation
more accuracy where it is most needed. In many ways these sampling techniques are a temporal analogue of the later
discussed Barnes and Hut and Multipole methods.

124 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Low sampling rate

Medium sampling rate

High sampling rate

Figure 9.3: Adaptive Sampling Based on Proximity

9.7 Methods for Force Calculation

Computationally, the force calculation is the most time expensive step for N-body simulation. We
now discuss some methods for computing forces.

9.7.1 Direct force calculation

The simplest way is to calculate the force directly from the definition.

~Fij = G
mimj

r2
= G

mimj

| ~xj − ~xi|3
(~xj − ~xi),

Note that the step for computing ~Fij takes 9 flops. It takes n flops to add ~Fij (1 ≤ j ≤ n).

Since ~Fij = − ~Fji, the total number of flops needed is roughly 5n2. In Big-O notation, this is an
O(n2) time computation. For large scale simulation (e.g., n = 100 million), the direct method is
impractical with today’s level of computing power.

It is clear, then, that we need more efficient algorithms. The one fact that we have to take
advantage of is that in a large system, the effects of individual distant particles on each other may
be insignificant and we may be able to disregard them without significant loss of accuracy. Instead
we will cluster these particles, and deal with them as though they were one mass. Thus, in order
to gain efficiency, we will approximate in space as we did in time by discretizing.

9.7.2 Potential based calculation

For N-body simulations, sometimes it is easier to work with the (gravitational) potential rather
than with the force directly. The force can then be calculated as the gradient of the potential.

In three dimensions, the gravitational potential at position ~x defined by n bodies with masses
m1, ..., mn at position ~x1,, ~xn, respectively is equal to

Φ(~x) =
n∑

i=1

G
mi

||~x − ~xi||
.

The force acting on a body with unit mass at position ~x is given by the gradient of Φ, i.e.,

F = −∇Φ(x).

Preface 125

The potential function is a sum of local potential functions

φ(~x) =
n∑

i=1

φ~xi
(~x) (9.3)

where the local potential functions are given by

φ~xi
(~x) =

G ∗ mi

||~x − ~xi||
in <3 (9.4)

9.7.3 Poisson Methods

The earlier method from 70s is to use Poisson solver. We work with the gravitational potential
field rather than the force field. The observation is that the potential field can be expressed as the
solution of a Poisson equation and the force field is the gradient of the potential field.

The gravitational potential at position ~x defined by n bodies with masses m1, ..., mn at position
~x1,, ~xn, respectively is equal to

Φ(~x) =
n∑

i=1

G
mi

|~x − ~xi|
.

The force acting on a body with unit mass at position ~x is given by the gradient of Φ:

~F = −∇Φ(~x).

So, from Φ we can calculate the force field (by numerical approximation).
The potential field Φ satisfies a Poisson equation:

∇2Φ =
∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
= ρ(x, y, z),

where ρ measures the mass distribution can be determined by the configuration of the N -body
system. (The function Φ is harmonic away from the bodies and near the bodies, div∇Φ = ∇2Φ is
determined by the mass distribution function. So ρ = 0 away from bodies).

We can use finite difference methods to solve this type of partial differential equations. In three
dimensions, we discretize the domain by a structured grid.

We approximate the Laplace operator ∇2 by finite difference and obtain from ∇2Φ = ρ(x, y, z)
a system of linear equations. Let h denote the grid spacing. We have

Φ(xi, yj , zk) =
1

h2
(Φ(xi + h, yj , zk) + Φ(xi − h, yj , zk) + Φ(xi, yj + h, zk)

+Φ(xi, yj − h, zk) + Φ(xi, yj , zk + h) + Φ(xi, yj , zk − h) − 6φ(xi, yj , zk))

= ρ(xi, yj , zk).

The resulting linear system is of size equal to the number of grid points chosen. This can be solved
using methods such as FFT (fast Fourier transform), SOR (successive overrelaxation), multigrid
methods or conjugate gradient. If n bodies give a relatively uniform distribution, then we can use
a grid which has about n grid points. The solution can be fairly efficient, especially on parallel
machines. For highly non-uniform set of bodies, hybrid methods such as finding the potential
induced by bodies within near distance by direct method, and approximate the potential field
induced by distant bodies by the solution of a much smaller Poisson equation discretization. More
details of these methods can be found in Hockney and Eastwood’s book.

126 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

rr1 r2

m particles n particles

Figure 9.4: Well-separated Clusters

9.7.4 Hierarchical methods

We now discuss several methods which use a hierarchical structure to decompose bodies into clus-
ters. Then the force field is approximated by computing the interaction between bodies and clusters
and/or between clusters and clusters. We will refer this class of methods hierarchical methods or
tree-code methods.

The crux of hierarchical N-body methods is to decompose the potential at a point x, φ(x), into
the sum of two potentials: φN (x), the potential induced by “neighboring” or “near-field” particles;
and φF (x), the potential due to “far-field” particles [5, 44]. In hierarchical methods, φN (x) is
computed exactly, while φF (x) is computed approximately.

The approximation is based on a notion of well-separated clusters [5, 44]. Suppose we have two
clusters A and B, one of m particles and one of n particles, the centers of which are separated by
a distance r. See Figure 9.4.

Suppose we want to find the force acting on all bodies in A by those in B and vice versa. A
direct force calculation requires O(mn) operations, because for each body in A we need to compute
the force induced by every body in B.

Notice that if r is much larger than both r1 and r2, then we can simplify the calculation
tremendously by replacing B by a larger body at its center of mass and replacing A by a larger
body at its center of mass. Let MA and MB be the total mass of A and B, respectively. The center
of mass cA and cB is given by

cA =

∑

i∈A mixi

MA

cB =

∑

j∈B mjxj

MB
.

We can approximate the force induced by bodies in B on a body of mass mx located at position
s by viewing B as a single mass MB at location cB. That is,

F (x) ≈ GmxMB(x − cB)

||x − cB||3
.

Such approximation is second order: The relative error introduced by using center of mass is
bounded by (max(r1, r2)/r)2. In other words, if f(x) be the true force vector acting on a body at

Preface 127

P Pl r

P

Figure 9.5: Binary Tree (subdivision of a straight line segment)

x, then

F (x) = f(x)

(

1 + O

((
max(r1, r2)

r

)2
))

.

This way, we can find all the interaction forces between A and B in O(n + m) time. The force
calculations between one m particle will computed separately using a recursive construction. This
observation gives birth the idea of hierarchical methods.

We can also describe the method in terms of potentials. If r is much larger than both r1 and r2,
i.e., A and B are “well-separated”, then we can use the pth order multipole expansion (to be given
later) to express the pth order approximation of potential due to all particles in B. Let Φp

B(x)
denote such a multipole expansion. To (approximately) compute the potential at particles in A,
we simply evaluate Φp

B() at each particle in A. Suppose Φp
B() has g(p, d) terms. Using multipole

expansion, we reduce the number of operations to g(p, d)(|A| + |B|). The error of the multipole-
expansion depends on p and the ratio max(r1, r2)/r. We say A and B are β-well-separated, for a
β > 2, if max(r1, r2)/r ≤ 1/β. As shown in [44], the error of the pth order multipole expansion is
bounded by (1/(β − 1))p.

9.8 Quadtree (2D) and Octtree (3D) : Data Structures for Canon-
ical Clustering

Hierarchical N-body methods use quadtree (for 2D) and octtree (for 3D) to generate a canonical
set of boxes to define clusters. The number of boxes is typically linear in the number of particles,
i.e., O(n).

Quadtrees and octtrees provide a way of hierarchically decomposing two dimensional and three
dimensional space. Consider first the one dimensional example of a straight line segment. One way
to introduce clusters is to recursively divide the line as shown in Figure 9.5.

This results in a binary tree2.

In two dimensions, a box decomposition is used to partition the space (Figure 9.6). Note that
a box may be regarded as a “product” of two intervals. Each partition has at most one particle in
it.

2A tree is a graph with a single root node and a number of subordinate nodes called leaves or children. In a binary
tree, every node has at most two children.

128 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 9.6: Quadtree

Figure 9.7: Octtree

A quadtree [88] is a recursive partition of a region of the plane into axis-aligned squares. One
square, the root , covers the entire set of particles. It is often chosen to be the smallest (up to a
constant factor) square that contains all particles. A square can be divided into four child squares,
by splitting it with horizontal and vertical line segments through its center. The collection of squares
then forms a tree, with smaller squares at lower levels of the tree. The recursive decomposition
is often adaptive to the local geometry. The most commonly used termination condition is: the
division stops when a box contains less than some constant (typically m = 100) number of particles
(See Figure 9.6).

In 2D case, the height of the tree is usually log2

√
N . This is in the order of . The complexity

of the problem is N · O(log(N)).

Octtree is the three-dimension version of quadtree. The root is a box covering the entire set
of particles. Octtree are constructed by recursively and adaptively dividing a box into eight child-
boxes, by splitting it with hyperplanes normal to each axes through its center (See Figure 9.7).

9.9 Barnes-Hut Method (1986)

The Barnes-Hut method uses these clustered data structures to represent the bodies in the simu-
lation, and takes advantage of the distant-body simplification mentioned earlier to reduce compu-
tational complexity to O(n log(n)).

The method of Barnes and Hut has two steps.

1. Upward evaluation of center of mass

Preface 129

m
1

m
2

m
4

m
3

c
2

c
1

c
4

c
3

Figure 9.8: Computing the new Center of Mass

Refer to Figure 9.6 for the two dimensional case. Treating each box as a uniform cluster, the
center of mass may be hierarchically computed. For example, consider the four boxes shown
in Figure 9.8.

The total mass of the system is

m = m1 + m2 + m3 + m4 (9.5)

and the center of mass is given by

~c =
m1 ~c1 + m2 ~c2 + m3 ~c3 + m4 ~c4

m
(9.6)

The total time required to compute the centers of mass at all layers of the quadtree is pro-
portional to the number of nodes, or the number of bodies, whichever is greater, or in Big-O
notation, O(n + v), where v is for vertex

This result is readily extendible to the three dimensional case.

Using this approximation will lose some accuracy. For instance, in 1D case, consider three
particles locate at x = −1, 0, 1 with strength m = 1. Consider these three particles as a
cluster, the total potential is

V (x) =
1

x
+

1

x − 1
+

1

x + 1
.

Expand the above equation using Taylor’s series,

V (x) =
3

x
+

2

x3
+

2

x5
+

. It is seen that high order terms are neglected. This brings the accuracy down when x is
close to the origin.

2. Pushing the particle down the tree
Consider the case of the octtree i.e. the three dimensional case. In order to evaluate the
potential at a point ~xi, start at the top of the tree and move downwards. At each node, check
whether the corresponding box, b, is well separated with respect to ~xi (Figure 9.9).

Let the force at point ~xi due to the cluster b be denoted by ~F (i, b). This force may be
calculated using the following algorithm:

130 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

x
_ b

Figure 9.9: Pushing the particle down the tree

• if b is “far” i.e. well separated from ~xi, then

~F (~xi) := ~F (~xi) +
GmxMb(~x − ~cb)

||~xi − ~cb||3
in <3 (9.7)

• else if b is “close” to ~xi

for k = 1 to 8

~F (~xi) = ~F (~xi) + ~F (i, child(b, k)) (9.8)

(9.9)

The computational complexity of pushing the particle down the tree has the upper bound
9hn, where h is the height of the tree and n is the number of particles. (Typically, for more
or less uniformly distributed particles, h = log4 n.)

9.9.1 Approximating potentials

We now rephrase Barnes and Hut scheme in term of potentials. Let

mA = total mass of particles in A
mB = total mass of particles in B
~cA = center of mass of particles in A
~cB = center of mass of particles in B

The potential at a point ~x due to the cluster B, for example, is given by the following second order
approximation:

φ(~x) ≈ mB

||~x − ~cB||
(1 +

1

δ2
) in <3 (9.10)

In other words, each cluster may be regarded as an individual particle when the cluster is sufficiently
far away from the evaluation point ~x.

A more advanced idea is to keep track of a higher order (Taylor expansion) approximation of
the potential function induced by a cluster. Such an idea provides better tradeoff between time
required and numerical precision. The following sections provide the two dimensional version of
the fast multipole method developed by Greengard and Rokhlin.

Preface 131

The Barnes-Hut method discussed above uses the particle-cluster interaction between two well-
separated clusters. Greengard and Rokhlin showed that the cluster-cluster intersection among
well-separated clusters can further improve the hierarchical method. Suppose we have k clusters
B1 ..., Bk that are well-separated from a cluster A. Let Φp

i () be the pth order multipole expansion
of Bi. Using particle-cluster interaction to approximate the far-field potential at A, we need to
perform g(p, d)|A|(|B1| + |B2| + ... + |Bk|) operations. Greengard and Rokhlin [44] showed that
from Φp

i () we can efficiently compute a Taylor expansion Ψp
i () centered at the centroid of A that

approximates Φp
i (). Such an operation of transforming Φp

i () to Ψp
i () is called a FLIP. The cluster-

cluster interaction first flips Φp
i () to Ψp

i (); we then compute Ψp
A() =

∑k
i=1 Ψp

i () and use Ψp
A() to

evaluate the potential at each particle in A. This reduces the number of operations to the order of

g(p, d)(|A| + |B1| + |B2| + ... + |Bk|).

9.10 Outline

• Introduction

• Multipole Algorithm: An Overview

• Multipole Expansion

• Taylor Expansion

• Operation No. 1 — SHIFT

• Operation No. 2 — FLIP

• Application on Quad Tree

• Expansion from 2-D to 3-D

9.11 Introduction

For N-body simulations, sometimes, it is easier to work with the (gravitational) potential rather
than with the force directly. The force can then be calculated as the gradient of the potential.

In two dimensions, the potential function at zj due to the other bodies is given by

φ(zj) =
n∑

i=1,i6=j

qi log(zj − zi)

=
n∑

i=1,i6=j

φzi
(zj)

with
φzi

(z) = qi log |z − zi|
where z1, . . ., zn the position of particles, and q1, . . ., qn the strength of particles. The potential
due to the bodies in the rest of the space is

φ(z) =
n∑

i=1

qi log(z − zi)

132 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Z

Z

Z

Z

Z

Z

1

2

Point

3

4

n

Zc

Faraway
Evaluation

Cluster of Bodies

Figure 9.10: Potential of Faraway Particle due to Cluster

which is singular at each potential body. (Note: actually the potential is Re φ(z) but we take the
complex version for simplicity.)

With the Barnes and Hut scheme in term of potentials, each cluster may be regarded as an
individual particle when the cluster is sufficiently far away from the evaluation point. The following
sections will provide the details of the fast multipole algorithm developed by Greengard and Rokhlin.

Many people are often mystified why the Green’s function is a logarithm in two dimensions,
while it is 1/r in three dimensions. Actually there is an intuitive explanation. In d dimensions
the Green’s function is the integral of the force which is proportional 1/rd−1. To understand the
1/rd−1 just think that the lines of force are divided “equally” on the sphere of radius r. One might
wish to imagine an d dimensional ball with small holes on the boundary filled with d dimensional
water. A hose placed at the center will force water to flow out radially at the boundary in a uniform
manner. If you prefer, you can imagine 1 ohm resistors arranged in a polar coordinate manner,
perhaps with higher density as you move out in the radial direction. Consider the flow of current
out of the circle at radius r if there is one input current source at the center.

9.12 Multipole Algorithm: An Overview

There are three important concepts in the multipole algorithm:

• function representations (multipole expansions and Taylor series)

• operators to change representations (SHIFTs and FLIPs)

• the general tree structure of the computation

9.13 Multipole Expansion

The multipole algorithm flips between two point of views, or to be more precise, two representations
for the potential function. One of them, which considers the cluster of bodies corresponding to
many far away evaluation points, is treated in detail here. This part of the algorithm is often called
the Multipole Expansion.

In elementary calculus, one learns about Taylor expansions for functions. This power series
represents the function perfectly within the radius of convergence. A multipole expansion is also

Preface 133

a perfectly valid representation of a function which typically converges outside a circle rather than
inside. For example, it is easy to show that

φzi
(z) = qi log(z − zi)

= qi log(z − zc) +
∞∑

k=1

−qi

k

(
zi − zc

z − zc

)k

where zc is any complex number. This series converges in the region |z − zc| > |z − zi|, i.e., outside
of the circle containing the singularity. The formula is particularly useful if |z − zc| � |z − zi|, i.e.,
if we are far away from the singularity.

Note that

φzi
(z) = qi log(z − zi)

= qi log[(z − zc) − (zi − zc)]

= qi

[

log(z − zc) + log(1 − zi − zc

z − zc
)

]

The result follows from the Taylor series expansion for log(1 − x). The more terms in the Taylor
series that are considered, the higher is the order of the approximation.

By substituting the single potential expansion back into the main equation, we obtain the
multipole expansion as following

φ(z) =
n∑

i=1

φzi
(z)

=
n∑

i=1

qi log(z − zc) +
n∑

i=1

∞∑

k=1

qi

(

−1

k

(
zi − zc

z − zc

)k
)

= Q log(z − zc) +
∞∑

k=1

ak

(
1

z − zc

)k

where

ak = −
n∑

i=1

qi(zi − zc)
k

k

When we truncate the expansion due to the consideration of computation cost, an error is
introduced into the resulting potential. Consider a p-term expansion

φp(z) = Q log(z − zc) +
p
∑

k=1

ak
1

(z − zc)k

An error bound for this approximation is given by

||φ(z) − φp(z)|| ≤ A
(∣
∣ z−zc

r

∣
∣− 1

)

∣
∣
∣
∣

r

z − zc

∣
∣
∣
∣

p

where r is the radius of the cluster and

A =
n∑

i=1

|qi|

134 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

ZC

Z1

Z2

Z

Evaluation Points

Z

3

4

q

q

q

1

2

3

Faraway

Cluster of

Figure 9.11: Potential of Particle Cluster

This result can be shown as the following

Error =

∣
∣
∣
∣
∣
∣

∞∑

k=p+1

ak
1

(z − zc)k

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

−
∞∑

k=p+1

n∑

i=1

qi

k

(
zi − zc

z − zc

)k
∣
∣
∣
∣
∣
∣

≤
∞∑

k=p+1

n∑

i=1

|qi|
∣
∣
∣
∣

r

z − zc

∣
∣
∣
∣

k

≤ A
∞∑

k=p+1

∣
∣
∣
∣

r

z − zc

∣
∣
∣
∣

k

≤ A

∣
∣
∣

r
z−zc

∣
∣
∣

p+1

1 −
∣
∣
∣

r
z−zc

∣
∣
∣

≤ A
(∣
∣ z−zc

r

∣
∣− 1

)

∣
∣
∣
∣

r

z − zc

∣
∣
∣
∣

p

At this moment, we are able to calculate the potential of each particle due to cluster of far away
bodies, through multipole expansion.

9.14 Taylor Expansion

In this section, we will briefly discuss the other point of view for the multipole algorithm, which
considers the cluster of evaluation points with respect to many far away bodies. It is called Taylor
Expansion. For this expansion, each processor ”ownes” the region of the space defined by the
cluster of evaluation points, and compute the potential of the cluster through a Taylor series about
the center of the cluster zc.

Generally, the local Taylor expansion for cluster denoted by C (with center zc) corresponding

Preface 135

to some body z has the form

φC,zc
(z) =

∞∑

k=0

bk(z − zc)
k

Denote z−zi = (z−zc)−(zi−zc) = −(zi−zc)(1−ξ). Then for z such that |z−zc| < min(zc, C),
we have |ξ| < 1 and the series φC,zc

(z) converge:

φC,zc
(z) =

∑

C

qi log(−(zi − zc)) +
∑

C

qi log(1 − ξ)

=
∑

C

qi log(−(zi − zc)) +
∞∑

k=1

(
∑

C

qi

)

k−1(zi − zc)
−k(z − zc)

k

= b0 +
∞∑

k=1

bk(z − zc)
k

where formulæ for coefficients are

b0 =
∑

C

qi log(−(zi − zc)) and bk = k−1
∑

C

qi(zi − zc)
−k k > 0.

Define the p-order truncation of local expansion φp
C,zc

as follows

φp
C,zc

(z) =
p
∑

k=0

bk(z − zc)
k.

We have error bound

∣
∣
∣φC,zc

(z) − φp
C,zc

(z)
∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∞∑

k=p+1

k−1
∑

C

qi

(
z − zc

zi − zc

)k
∣
∣
∣
∣
∣
∣

≤ 1

p + 1

∑

C

|qi|
∞∑

k=p+1

∣
∣
∣
∣

z − zc

min(zc, C)

∣
∣
∣
∣

k

=
A

(1 + p)(1 − c)
cp+1,

where A =
∑

C |qi| and c = |z − zc|/ min(zc, C) < 1.

By now, we can also compute the local potential of the cluster through the Taylor expansion.
During the process of deriving the above expansions, it is easy to see that

• Both expansions are singular at the position of any body;

• Multipole expansion is valid outside the cluster under consideration;

• Taylor expansion converges within the space defined the cluster.

At this point, we have finished the basic concepts involved in the multipole algorithm. Next, we will
begin to consider some of the operations that could be performed on and between the expansions.

136 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Z

C-Child2Z

C-Child1Z C-Child3Z

C-Child4Z

C-Parent

Figure 9.12: SHIFT the Center of Reference

9.15 Operation No.1 — SHIFT

Sometimes, we need to change the location of the center of the reference for the expansion series,
either the multipole expansion or the local Taylor expansion. To accomplish this goal, we will
perform the SHIFT operation on the expansion series.

For the multipole expansion, consider some far away particle with position z such that both
series φz0 and φz1 , corresponding to different center of reference z0 and z1, converge: |z − z0| >
max(z0, C) and |z − z1| > max(z1, C). Note that

z − z0 = (z − z1) − (z0 − z1) = (z − z1)

(

1 − z0 − z1

z − z1

)

= (z − z1)(1 − ξ)

for appropriate ξ and if we also assume z sufficiently large to have |ξ| < 1, we get identity

(1 − ξ)−k =

(∞∑

l=0

ξl

)k

=
∞∑

l=0

(

k + l − 1

l

)

ξl.

Now, we can express the SHIFT operation for multipole expansion as

φz1(z) = SHIFT (φz0(z), z0 ⇒ z1)

= SHIFT

(

a0 log(z − z0) +
∞∑

k=1

ak(z − z0)
−k, z0 ⇒ z1

)

= a0 log(z − z1) + a0 log(1 − ξ) +
∞∑

k=1

ak(1 − ξ)−k(z − z1)
−k

= a0 log(z − z1) − a0

∞∑

k=1

k−1ξk +
∞∑

k=1

∞∑

l=1

ak

(

k + l − 1

l

)

ξl(z − z1)
−k

= a0 log(z − z1) +
∞∑

l=1

(
l∑

k=1

ak(z0 − z1)
l−k

(

l − 1

k − 1

)

− a0l
−1(z0 − z1)

l

)

(z − z1)
−l

We can represent φz1(z) as a sequence of its coefficients a′
k:

a′0 = a0 and a′l =
l∑

k=1

ak(z0 − z1)
l−k

(

l − 1

k − 1

)

− a0l
−1(z0 − z1)

l l > 0.

Preface 137

Note that a′l depends only on a0, a1, . . . , al and not on the higher coefficients. It shows that
given φp

z0
we can compute φp

z1
exactly, that is without any further error! In other words, operators

SHIFT and truncation commute on multipolar expansions:

SHIFT (φp
z0

, z0 ⇒ z1) = φp
z1

.

Similarly, we can obtain the SHIFT operation for the local Taylor expansion, by extending the
operator on the domain of local expansion, so that SHIFT (φC,z0 , z0 ⇒ z1) produces φC,z1 . Both
series converges for z such that |z − z0| < min(z0, C), |z − z1| < min(z1, C). Then

φC,z1(z) = SHIFT (φC,z0(z), z0 ⇒ z1)

=
∞∑

k=0

bk((z − z1) − (z0 − z1))
k

=
∞∑

k=0

bk

∞∑

l=0

(−1)k−l

(

k

l

)

(z0 − z1)
k−l(z − z1)

l

=
∞∑

l=0

(∞∑

k=l

bk(−1)k−l

(

k

l

)

(z0 − z1)
k−l

)

(z − z1)
l

Therefore, formula for transformation of coefficients bk of φC,z0 to b′l of φC,z1 are

b′l =
∞∑

k=l

ak(−1)k−l

(

k

l

)

(z0 − z1)
k−l.

Notice that in this case, b′l depends only on the higher coefficients, which means knowledge of
the coefficients b0, b1, . . . , bp from the truncated local expansion in z0 does not suffice to recover the
coefficients b′0, b

′
1, . . . b

′
p at another point z1. We do incur an error by the SHIFT operation applied

to truncated local expansion:

∣
∣
∣SHIFT (φp

C,z0
, z0 ⇒ z1) − φp

C,z1

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∞∑

l=0





∞∑

k=p+1

bk(−1)k−l(z0 − z1)
k−l



 (z − z1)
l

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

∞∑

k=p+1

bk(z1 − z0)
k

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

l=0

(
z − z1

z1 − z0

)l
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∞∑

k=p+1

k−1
∑

C

qi

(
z1 − z0

zi − z0

)k
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

l=0

(
z − z1

z0 − z1

)l
∣
∣
∣
∣
∣

≤ A

(p + 1)(1 − c)(1 − D)
cp+1,

where A =
∑

C |qi|. c = |z1 − z0|/ min(z0, C) and D = |z − z1|/|z0 − z1|.
At this moment, we have obtained all the information needed to perform the SHIFT operation

for both multipole expansion and local Taylor expansion. Next, we will consider the operation
which can transform multipole expansion to local Taylor expansion.

9.16 Operation No.2 — FLIP

At this section, we will introduce the more powerful operation in multipole algorithm, namely
the FLIP operation. For now, we will consider only the transformation in the direction from the

138 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

I I

Taylor Expansion

I

I

I

N

N

N

C

Multipole Expansion

FLIP

Figure 9.13: FLIP from Multipole to Taylor Expansion

multipole expansion φz0(z) to the local Taylor expansion φC,z1(z), denoted by

FLIP (φz0 , z0 ⇒ z1) = φC,z1

For |z − z0| > max(z0, C) and |z − z1| < min(z1, C) both series converge. Note that

z − z0 = −(z0 − z1)(1 − z − z1

z0 − z1
) = −(z0 − z1)(1 − ξ)

and assume also |ξ| < 1. Then,

φz0(z) = a0 log(z − z0) +
∞∑

k=1

ak(z − z0)
−k

= a0 log(−(z0 − z1)) + a0 log(1 − ξ) +
∞∑

k=1

ak(−1)k(z0 − z1)
−k(1 − ξ)−k

= a0 log(−(z0 − z1)) +
∞∑

l=1

− a0l
−1ξl +

∞∑

k=1

(−1)kak(z0 − z1)
−k

∞∑

l=0

(

k + l − 1

l

)

ξl

=

(

a0 log(−(z0 − z1)) +
∞∑

k=1

(−1)kak(z0 − z1)
−k

)

+

∞∑

l=1

(

a0l
−1(z0 − z1)

−l +
∞∑

k=1

(−1)kak

(

k + l − 1

l

)

(z0 − z1)
−(k+l)

)

(z − z1)
l.

Therefore coefficients ak of φz0 transform to coefficients bl of φC,z1 by the formula

b0 = a0 log(−(z0 − z1)) +
∞∑

k=1

(−1)kak(z0 − z1)
−k

bl = a0l
−1(z0 − z1)

−l +
∞∑

k=1

(−1)kak

(

k + l − 1

l

)

(z0 − z1)
−(k+l) l > 0

Note that FLIP does not commute with truncation since one has to know all coefficients
a0, a1, . . . to compute b0, b1, . . . , bp exactly. For more information on the error in case of truncation,
see Greengard and Rokhlin (1987).

Preface 139

N

C

N

N

Figure 9.14: First Level of Quad Tree

C

I

N I I

I

I

I I

I

NN

II

I I

Figure 9.15: Second Level of Quad Tree

9.17 Application on Quad Tree

In this section, we will go through the application of multipole algorithm on quad tree in detail.
During the process, we will also look into the two different operations SHIFT and FLIP , and
gain some experience on how to use them in real situations.

We will start at the lowest level h of the tree. For every node of the tree, it computes the
multipole expansion coefficients for the bodies inside, with origin located at the center of the cell.
Next, it will shift all of the four centers for the children cells into the center of the parent node,
which is at the h − 1 level, through the SHIFT operation for the multipole expansion. Adding up
the coefficients from the four shifted expansion series, the multipole expansion of the whole parent
node is obtained. And this SHIFT and ADD process will continue upward for every level of the
tree, until the multipole expansion coefficients for each node of the entire tree are stored within
that node. The computational complexity for this part is O(N).

Before we go to the next step, some terms have to be defined first.

• NEIGHBOR — a neighbor N to a cell C is defined as any cell which shares either an edge
or a corner with C

• INTERACTIVE — an interactive cell I to a cell C is defined as any cell whose parent is a
neighbor to parent of C, excluding those which are neighbors to C

140 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

F

C

F F F F F

F

F

F F F F F

F

F F

F

FF

F

I

I

I I I

I

I

I

I

I

I

I

N N

N

Figure 9.16: Third Level of Quad Tree

• FARAWAY — a faraway cell F to a cell C is defined as any cell which is neither a neighbor
nor an interactive to C

Now, we start at the top level of the tree. For each cell C, FLIP the multipole expansion for the
interactive cells and combine the resulting local Taylor expansions into one expansion series. After
all of the FLIP and COMBINE operations are done, SHIFT the local Taylor expansion from the
node in this level to its four children in the next lower level, so that the information is conserved
from parent to child. Then go down to the next lower level where the children are. To all of
the cells at this level, the faraway field is done (which is the interactive zone at the parent level).
So we will concentrate on the interactive zone at this level. Repeat the FLIP operation to all of
the interactive cells and add the flipped multipole expansion to the Taylor expansion shifted from
parent node. Then repeat the COMBINE and SHIFT operations as before. This entire process
will continue from the top level downward until the lowest level of the tree. In the end, add them
together when the cells are close enough.

9.18 Expansion from 2-D to 3-D

For 2-D N-body simulation, the potential function is given as

φ(zj) =
n∑

i=1

qi log(zj − zi)

where z1, . . ., zn the position of particles, and q1, . . ., qn the strength of particles. The corresponding
multipole expansion for the cluster centered at zc is

φzc
(z) = a0 log(z − zc) +

∞∑

k=1

ak
1

(z − zc)k

The corresponding local Taylor expansion looks like

φC,zc
(z) =

∞∑

k=0

bk
1

(z − zc)k

Preface 141

In three dimensions, the potential as well as the expansion series become much more compli-
cated. The 3-D potential is given as

Φ(x) =
n∑

i=1

qi
1

||x − xi||

where x = f(r, θ, φ). The corresponding multipole expansion and local Taylor expansion as follow-
ing

Φmultipole(x) =
∞∑

n=0

1

rn+1

n∑

m=−n

am
n Y m

n (θ, φ)

ΦTaylor(x) =
∞∑

n=0

n∑

m=−n

rnbm
n Y m

n (θ, φ)

where Y m
n (θ, φ) is the Spherical Harmonic function. For a more detailed treatment of 3-D expan-

sions, see Nabors and White (1991).

9.19 Parallel Implementation

In Chapter 10.2, we will discussion issues on parallel N-body implementation.

142 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Lecture 10

Partitioning and Load Balancing

Handling a large mesh or a linear system on a supercomputer or on a workstation cluster usually
requires that the data for the problem be somehow partitioned and distributed among the pro-
cessors. The quality of the partition affects the speed of solution: a good partition divides the
work up evenly and requires as little communication as possible. Unstructured meshes may ap-
proximate irregular physical problems with fewer mesh elements, their use increases the difficulty
of programming and requires new algorithms for partitioning and mapping data and computations
onto parallel machines. Partitioning is also important for VLSI circuit layout and parallel circuit
simulation.

10.1 Motivation from the Parallel Sparse Matrix Vector Multipli-
cation

Multiplying a sparse matrix by a vector is a basic step of most commonly used iterative methods
(conjugate gradient, for example). We want to find a way of efficiently parallelizing this operation.

Say that processor i holds the value of vi. To update this value, processor need to compute a
weighted sum of values at itself and all of its neighbors. This means it has to first receiving values
from processors holding values of its neighbors and then computing the sum. Viewing this in graph
terms, this corresponds to communicating with a node’s nearest neighbors.

We therefore need to break up the vector (and implicitly matrix and graph) so that:

• We balance the computational load at each processor. This is directly related to the number
of non-zero entries in its matrix block.

• We minimize the communication overhead. How many other values does a processor have to
receive? This equals the number of these values that are held at other processors.

We must come up with a proper division to reduce overhead. This corresponds to dividing
up the graph of the matrix among the processors so that there are very few crossing edges. First
assume that we have 2 processors, and we wish to partition the graph for parallel processing. As an
easy example, take a simplistic cut such as cutting the 2D regular grid of size n in half through the
middle. Let’s define the cut size as the number of edges whose endpoints are in different groups.
A good cut is one with a small cut size. In our example, the cut size would be

√
n. Assuming that

the cost of each communication is 10 times more than an local arithmetic operation. Then the
total parallel cost of perform matrix-vector product on the grid is (4n)/2 + 10

√
n = 2n + 10

√
n. In

general, for p processors, to need to partition the graph into p subgraphs.

143

144 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Various methods are used to break up a graph into parts such that the number of crossing edges
is minimized. Here we’ll examine the case where p = 2 processors, and we want to partition the
graph into 2 halves.

10.2 Separators

The following definitions will be of use in the discussion that follows. Let G = (V, E) be an
undirected graph.

• A bisection of G is a division of V into V1 and V2 such that |V1| = |V2|. (If |V | is odd,
then the cardinalities differ by at most 1). The cost of the bisection (V1, V2) is the number
of edges connecting V1 with V2.

• If β ∈ [1/2, 1), a β-bisection is a division of V such that V1,2 ≤ β|V |.

• An edge separator of G is a set of edges that if removed, would break G into 2 pieces with
no edges connecting them.

• A p-way partition is a division of V into p pieces V1,V2,. . .,Vp where the sizes of the various
pieces differ by at most 1. The cost of this partition is the total number of edges crossing the
pieces.

• A vertex separator is a set C of vertices that break G into 3 pieces A, B, and C where no
edges connect A and B. We also add the requirement that A and B should be of roughly
equal size.

Usually, we use edge partitioning for parallel sparse matrix-vector product and vertex parti-
tioning for the ordering in direct sparse factorization.

10.3 Spectral Partitioning – One way to slice a problem in half

The three steps to illustrate the solution of that problem are:

A. Electrical Networks (for motiving the Laplace matrix of a graph)

B. Laplacian of a Graph

C. Partitioning (that uses the spectral information)

10.3.1 Electrical Networks

As an example we choose a certain configuration of resistors (1 ohm), which are combined as shown
in fig. 10.1. A battery is connected to the nodes 3 and 4. It provides the voltage VB. To obtain
the current, we have to calculate the effective resistance of the configuration

I =
VB

eff. res.
. (10.1)

This so called Graph is by definition a collection of nodes and edges.

Preface 145

1

2

3 4

5

6

1

2

3

4 6

m

nBattery

V volts
B

5

7

8

nodes

edges

Figure 10.1: Resistor network with nodes and edges

10.3.2 Laplacian of a Graph

Kirchoff’s Law tells us












2 −1 −1
−1 3 −1 −1
−1 −1 3 −1

−1 3 −1 −1
−1 −1 3 −1

−1 −1 2























V1

V2

V3

V4

V5

V6












=












0
0
1

−1
0
0












(10.2)

The matrix contains the information of how the resistors are connected, it is called the Laplacian
of the Graph

∇2
G = n × n matrix, G. . . graph

n. . . nodes
m. . . edges

(10.3)

(

∇2
G

)

ii
= degree of node i (10.4)

(

∇2
G

)

ij
=

{

0 if 6 ∃ edge between node i and node j
−1 if ∃ edge between node i and node j

(10.5)

Yet there is another way to obtain the Laplacian. First we have to set up the so called Node–edge
Incidence matrix, which is a m × n matrix and its elements are either 1, −1 or 0 depending on
whether the edge (row of the matrix) connects the node (column of matrix) or not. We find

146 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

A B

Long distance calls

Local calls
Local calls

Figure 10.2: Partitioning of a telephone net as an example for a graph comparable in cost

nodes 1 2 3 4 5 6

MG =

edges
1
2
3
4
5
6
7
8



















1 −1
1 −1

1 −1
1 −1

1 −1
1 −1

1 −1
1 −1



















(10.6)

MT
G MG = ∇2

G (10.7)

10.3.3 Spectral Partitioning

Partitioning means that we would like to break the problem into 2 parts A and B, whereas the
number of connections between both parts are to be as small as possible (because they are the
most expensive ones), see fig. 10.2. Now we define a vector x ∈ Rn having the values xi = ±1.
+1 stands for belongs to part A, −1 means belongs to part B. With use of some vector calculus we
can show the following identity

n∑

i=1

(MG x)2i = (MG x)T (MG x) = xT MT
G MG x = xT ∇2

G x (10.8)

xT ∇2
G x = 4 × (# edges between A and B).

In order to find the vector x with the least connections between part A and B, we want to solve
the minimization problem:

Min. xT ∇2
G x

xi = ±1
∑

xi = 0







≥







Min. xT ∇2
G x

xi ∈ Rn
∑

x2
i = n

∑
xi = 0

(10.9)

Preface 147

Figure 10.3: Tapir (Bern-Mitchell-Ruppert)

Finding an optimal ±1 solution is intractable (NP-hard) in general. In practice, we relax the
integer condition and allow the solution to be real. We do require the norm square of the solution,
like the integer case, equal to n (see RHS of eqn. (10.9)). The relaxation enlarges the solution
space, hence its optimal solution is no more than that of its integer counterpart. As an heuristic,
we solve the relaxed version of the problem and “round” the solution to give an ±1 solution.

The solution of the problem on the RHS of eqn. (10.9) gives us the second smallest eigenvalue
of the Laplacian ∇2

G and the corresponding eigenvector, which is in fact the vector x with the least
connections in the relaxation sense. To obtain a partition of the graph, we can divide its node set
according to the vector x. We can even control the ratio of the partition. For example to obtain
a bisection, i.e., a partition of each size, we can find the median of x and put those nodes whose
x values is smaller than the median on one side and the remaining on the other side. We can also
use the similar idea to divide the graph into two parts in which one is twice as big as the another.

Figure 10.3 shows a mesh together with its spectral partition. For those of you as ignorant as
your professors, a tapir is defined by Webster as any of several large inoffensive chiefly nocturnal
ungulates (family Tap iridae) of tropical America, Malaya, and Sumatra related to the horses and
rhinoceroses. The tapir mesh is generated by a Matlab program written by Scott Mitchell based
on a non-obtuse triangulation algorithm of Bern-Mitchell-Ruppert. The partition in the figure is
generated by John Gilbert’s spectral program in Matlab.

One has to notice that the above method is merely a heuristic. The algorithm does not come
with any performance guarantee. In the worst case, the partition may be far from the optimal,
partially due to the round-off effect and partially due the requirement of equal-sized partition.
In fact the partition for the tapir graph is not quite optimal. Nevertheless, the spectral method,
with the help of various improvements, works very well in practice. We will cover the partitioning
problem more systematically later in the semester.

The most commonly used algorithm for finding the second eigenvalue and its eigenvector is
the Lanczos algorithm though it makes far better sense to compute singular values rather than
eigenvalues. Lanczos is an iterative algorithm that can converge quite quickly.

148 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 10.4: Its Spectral Partition

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

Figure 10.5: The 2nd eigenfunction of MathWork’s logo

In general, we may need to divide a graph into more than one piece. The most commonly used
approach is to recursively apply the partitioner that divides the graph into two pieces of roughly
equal size. More systematic treatment of the partitioning problem will be covered in future lectures.

The success of the spectral method in practice has a physical interpretation. Suppose now we
have a continuous domain in place of a graph. The Laplacian of the domain is the continuous
counterpart of the Laplacian of a graph. The kth eigenfunction gives the kth mode of vibration
and the second eigenfunction induce a cut (break) of the domain along the weakest part of the
domain. (See figure10.5)

10.4 Geometric Methods

The spectral partitioning method only deals with the topology of the graph; the vertex locations
are not considered. For many practical problems, the graph is derived from a mesh. The geometric
method developed by Miller, Teng, Thurston, and Vavasis makes use of the vertex locations, and
is guaranteed to partition well-shaped 1 d-dimensional unstructured mesh with n vertices using a

1For example, no grid angles can be too small/too large.

Preface 149

Finite Element Mesh

Figure 10.6: The input is a mesh with specified coordinates. Every triangle must be “well-shaped”,
which means that no angle can be too small. Remarks: The mesh is a subgraph of the intersection
graph of a set of disks, one centered at each mesh point. Because the triangles are well-shaped,
only a bounded number of disks can overlap any point, and the mesh is an “alpha-overlap graph”.
This implies that it has a good separator, which we proceed to find.

cut size O(n1−1/d), where the cut size is the number of elements in the vertex separator. Note that
this bound on the cut size is of the same order as for a regular grid of the same size. Such a bound
does not hold for spectral method in general.

The geometric partitioning method has a great deal of theory behind it, but the implementation
is relatively simple. For this reason, we will begin with an illustrative example before discussing
the method and theoretical background in more depth. To motivate the software development
aspect of this approach, we use the following figures (Figures 10.6 – 10.13) generated by a Matlab
implementation (written by Gilbert and Teng) to outline the steps for dividing a well-shaped mesh
into two pieces. The algorithm works on meshes in any dimension, but we’ll stick to two dimensions
for the purpose of visualization.

To recap, the geometric mesh partitioning algorithm can be summed up as follows (a more
precise algorithm follows):

• Perform a stereographic projection to map the points in a d-dimensional plane to the surface
of a d + 1 dimensional sphere

• (Approximately) compute the centerpoint of the points on the sphere

• Perform a conformal map to move the centerpoint to the center of the sphere

• Find a plane through the center of the sphere that approximately divides the nodes equally;
translate this plane to obtain a more even division

• Undo the conformal mapping and the stereographic mapping. This leaves a circle in the
plane.

150 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mesh Points in the Plane

Figure 10.7: Let’s redraw the mesh, omitting the edges for clarity.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.8

−0.6

−0.4

−0.2

0

Points Projected onto the Sphere

Figure 10.8: First we project the points stereographically from the plane onto the surface of a
sphere (of one higher dimension than the mesh) tangent to the plane of the mesh. A stereographic
projection is done by drawing a line between a point A on the plane and the north pole of the
sphere, and mapping the point A to the intersection of the surface of the sphere and the line. Now
we compute a “centerpoint” for the projected points in 3-space. A centerpoint is defined such that
every plane through the centerpoint separates the input points into two roughly equal subsets.
(Actually it’s too expensive to compute a real centerpoint, so we use a fast, randomized heuristic
to find a pretty good approximation.

Preface 151

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Conformally Mapped Projected Points

Figure 10.9: Next, we conformally map the points so that the centerpoint maps to the center of
the sphere. This takes two steps: First we rotate the sphere about the origin (in 3-space) so that
the centerpoint is on the z axis, and then we scale the points in the plane to move the centerpoint
along the z axis to the origin (this can be thought of as mapping the sphere surface back to the
plane, stretching the plane, then re-mapping the plane back to the surface of the sphere). The
figures show the final result on the sphere and in the plane.

10.4.1 Geometric Graphs

This method applies to meshes in both two and three dimensions. It is based on the following
important observation: graphs from large-scale problems in scientific computing are often defined
geometrically. They are meshes of elements in a fixed dimension (typically two and three dimen-
sions), that are well shaped in some sense, such as having elements of bounded aspect ratio or
having elements with angles that are not too small. In other words, they are graphs embedded in
two or three dimensions that come with natural geometric coordinates and with structures.

We now consider the types of graphs we expect to run these algorithms on. We don’t expect to
get a truly random graph. In fact, Erdös, Graham, and Szemerédi proved in the 1960s that with
probability = 1, a random graph with cn edges does not have a two-way division with o(n) crossing
edges.

Structured graphs usually have divisions with
√

n crossing edges. The following classes of graphs
usually arise in applications such as finite element and finite difference methods (see Chapter ??):

• Regular Grids: These arise, for example, from finite difference methods.

• ‘Quad”-tree graphs and “Meshes”: These arise, for example, from finite difference meth-
ods and hierarchical N-body simulation.

• k-nearest neighbor graphs in d dimensions Consider a set P = {p1, p2, . . . , pn} of n
points in IRd. The vertex set for the graph is {1, 2, . . . , n} and the edge set is {(i, j) :
pj is one of the k-nearest neighbors of pi or vice-versa}. This is an important class of graphs
for image processing.

152 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Conformally Mapped Points in the Plane

Figure 10.10: Because the approximate centerpoint is now at the origin, any plane through the
origin should divide the points roughly evenly. Also, most planes only cut a small number of mesh
edges (O(

√

(n)), to be precise). Thus we find a separator by choosing a plane through the origin,
which induces a great circle on the sphere. In practice, several potential planes are considered, and
the best one accepted. Because we only estimated the location of the centerpoint, we must shift
the circle slightly (in the normal direction) to make the split exactly even. The second circle is the
shifted version.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Conformally Mapped Projected Points

Figure 10.11: We now begin “undoing” the previous steps, to return to the plane. We first undo
the conformal mapping, giving a (non-great) circle on the original sphere ...

Preface 153

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.8

−0.6

−0.4

−0.2

0

Points Projected onto the Sphere

Figure 10.12: ... and then undo the stereographic projection, giving a circle in the original plane.

−2 −1.5 −1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Mesh Points in the Plane

Figure 10.13: This partitions the mesh into two pieces with about n/2 points each, connected by
at most O(

√

(n)) edges. These connecting edges are called an ”edge separator”. This algorithm
can be used recursively if more divisions (ideally a power of 2) are desired.

154 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

• Disk packing graphs: If a set of non-overlapping disks is laid out in a plane, we can tell
which disks touch. The nodes of a disk packing graph are the centers of the disks, and edges
connect two nodes if their respective disks touch.

• Planar graphs: These are graphs that can be drawn in a plane without crossing edges. Note
that disk packing graphs are planar, and in fact every planar graph is isomorphic to some
disk-packing graph (Andreev and Thurston).

10.4.2 Geometric Partitioning: Algorithm and Geometric Modeling

The main ingredient of the geometric approach is a novel geometrical characterization of graphs
embedded in a fixed dimension that have a small separator, which is a relatively small subset of
vertices whose removal divides the rest of the graph into two pieces of approximately equal size. By
taking advantage of the underlying geometric structure, partitioning can be performed efficiently.

Computational meshes are often composed of elements that are well-shaped in some sense, such
as having bounded aspect ratio or having angles that are not too small or too large. Miller et al.
define a class of so-called overlap graphs to model this kind of geometric constraint.

An overlap graph starts with a neighborhood system, which is a set of closed disks in d-
dimensional Euclidean space and a parameter k that restricts how deeply they can intersect.

Definition 10.4.1 A k-ply neighborhood system in d dimensions is a set {D1, . . . , Dn} of closed
disks in IRd, such that no point in IRd is strictly interior to more than k of the disks.

A neighborhood system and another parameter α define an overlap graph. There is a vertex for
each disk. For α = 1, an edge joins two vertices whose disks intersect. For α > 1, an edge joins two
vertices if expanding the smaller of their two disks by a factor of α would make them intersect.

Definition 10.4.2 Let α ≥ 1, and let {D1, . . . , Dn} be a k-ply neighborhood system. The (α, k)-
overlap graph for the neighborhood system is the graph with vertex set {1, . . . , n} and edge set

{(i, j)|(Di ∩ (α · Dj) 6= ∅) and ((α · Di) ∩ Dj 6= ∅)}.

We make an overlap graph into a mesh in d-space by locating each vertex at the center of its disk.

Overlap graphs are good models of computational meshes because every mesh of bounded-
aspect-ratio elements in two or three dimensions is contained in some overlap graph (for suitable
choices of the parameters α and k). Also, every planar graph is an overlap graph. Therefore, any
theorem about partitioning overlap graphs implies a theorem about partitioning meshes of bounded
aspect ratio and planar graphs.

We now describe the geometric partitioning algorithm.

We start with two preliminary concepts. We let Π denote the stereographic projection mapping
from IRd to Sd, where Sd is the unit d-sphere embedded in IRd+1. Geometrically, this map may
be defined as follows. Given x ∈ IRd, append ‘0’ as the final coordinate yielding x′ ∈ IRd+1. Then
compute the intersection of Sd with the line in IRd+1 passing through x′ and (0, 0, . . . , 0, 1)T . This
intersection point is Π(x).

Algebraically, the mapping is defined as

Π(x) =

(

2x/χ
1 − 2/χ

)

Preface 155

where χ = xT x+1. It is also simple to write down a formula for the inverse of Π. Let u be a point
on Sd. Then

Π−1(u) =
ū

1 − ud+1

where ū denotes the first d entries of u and ud+1 is the last entry. The stereographic mapping,
besides being easy to compute, has a number of important properties proved below.

A second crucial concept for our algorithm is the notion of a center point. Given a finite subset
P ⊂ IRd such that |P | = n, a center point of P is defined to be a point x ∈ IRd such that if H is
any open halfspace whose boundary contains x, then

|P ∩ H| ≤ dn/(d + 1). (10.10)

It can be shown from Helly’s theorem [25] that a center point always exists. Note that center points
are quite different from centroids. For example, a center point (which, in the d = 1 case, is the
same as a median) is largely insensitive to “outliers” in P . On the hand, a single distant outliers
can cause the centroid of P to be displaced by an arbitrarily large distance.

Geometric Partitioning Algorithm

Let P = {p1, . . . , pn} be the input points in IRd that define the overlap graph.

1. Given p1, . . . , pn, compute P ′ = {Π(p1), . . . , Π(pn)} so that P ′ ⊂ Sd.

2. Compute a center point z of P ′.

3. Compute an orthogonal (d + 1) × (d + 1) matrix Q such that Qz = z′ where

z′ =









0
...
0
θ









such that θ is a scalar.

4. Define P ′′ = QP ′ (i.e., apply Q to each point in P ′). Note that P ′′ ⊂ Sd, and the center
point of P ′′ is z′.

5. Let D be the matrix [(1 − θ)/(1 + θ)]1/2I, where I is the d × d identity matrix. Let P ′′′ =
Π(DΠ−1(P ′′)). Below we show that the origin is a center point of P ′′′.

6. Choose a random great circle S0 on Sd.

7. Transform S0 back to a sphere S ⊂ IRd by reversing all the transformations above, i.e.,
S = Π−1(Q−1Π(D−1Π−1(S0))).

8. From S compute a set of vertices of G that split the graph as in Theorem ??. In particular,
define C to be vertices embedded “near” S, define A be vertices of G − C embedded outside
S, and define B to be vertices of G − C embedded inside S.

We can immediately make the following observation: because the origin is a center point of
P ′′′, and the points are split by choosing a plane through the origin, then we know that |A| ≤
(d + 1)n/(d + 2) and |B| ≤ (d + 1)n/(d + 2) regardless of the details of how C is chosen. (Notice
that the constant factor is (d + 1)/(d + 2) rather than d/(d + 1) because the point set P ′ lies in

156 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

IRd+1 rather than IRd.) Thus, one of the claims made in Theorem ?? will follow as soon as we have
shown that the origin is indeed a center point of P ′′′ at the end of this section.

We now provide additional details about the steps of the algorithm, and also its complexity
analysis. We have already defined stereographic projection used Step 1. Step 1 requires O(nd)
operations.

Computing a true center point in Step 2 appears to a very expensive operation (involving a
linear programming problem with nd constraints) but by using random (geometric) sampling, an
approximate center point can be found in random constant time (independent of n but exponential
in d) [100, 48]. An approximate center point satisfies 10.10 except with (d + 1 + ε)n/(d + 2) on the
right-hand side, where ε > 0 may be arbitrarily small. Alternatively, a deterministic linear-time
sampling algorithm can be used in place of random sampling [65, 96], but one must again compute
a center of the sample using linear programming in time exponential in d [67, 41].

In Step 3, the necessary orthogonal matrix may be represented as a single Householder
reflection—see [43] for an explanation of how to pick an orthogonal matrix to zero out all but
one entry in a vector. The number of floating point operations involved is O(d) independent of n.

In Step 4 we do not actually need to compute P ′′; the set P ′′ is defined only for the purpose
of analysis. Thus, Step 4 does not involve computation. Note that the z ′ is the center point
of P ′′ after this transformation, because when a set of points is transformed by any orthogonal
transformation, a center point moves according to the same transformation (more generally, center
points are similarly moved under any affine transformation). This is proved below.

In Step 6 we choose a random great circle, which requires time O(d). This is equivalent to
choosing plane through the origin with a randomly selected orientation. (This step of the algorithm
can be made deterministic; see [?].) Step 7 is also seen to require time O(d).

Finally, there are two possible alternatives for carrying out Step 8. One alternative is that we
are provided with the neighborhood system of the points (i.e., a list of n balls in IRd) as part of the
input. In this case Step 8 requires O(nd) operations, and the test to determine which points belong
in A, B or C is a simple geometric test involving S. Another possibility is that we are provided
with the nodes of the graph and a list of edges. In this case we determine which nodes belong in
A, B, or C based on scanning the adjacency list of each node, which requires time linear in the size
of the graph.

Theorem 10.4.1 If M is an unstructured mesh with bounded aspect ratio, then the graph of M is
a subgraph of a bounded overlap graph of the neighborhood system where we have one ball for each
vertex of M of radius equal to half of the distance to its nearest vertices. Clearly, this neighborhood
system has ply equal to 1.

Theorem 10.4.1 (Geometric Separators [67]) Let G be an n-vertex (α, k)-overlap graph in d
dimensions. Then the vertices of G can be partitioned into three sets A, B, and C, such that

• no edge joins A and B,

• A and B each have at most (d + 1)/(d + 2) vertices,

• C has only O(αk1/dn(d−1)/d) vertices.

Such a partitioning can be computed by the geometric-partitioning-algorithm in randomized
linear time sequentially, and in O(n/p) parallel time when we use a parallel machine of p processors.

Preface 157

10.4.3 Other Graphs with small separators

The following classes of graphs all have small separators:

• Lines have edge-separators of size 1. Removing the middle edge is enough.

• Trees have a 1-vertex separator with β = 2/3 - the so-called centroid of the tree.

• Planar Graphs. A result of Lipton and Tarjan shows that a planar graph of bounded degree
has a

√
8n vertex separator with β = 2/3.

• d dimensional regular grids (those are used for basic finite difference method). As a folklore,
they have a separator of size n1−1/d with beta β = 1/2.

10.4.4 Other Geometric Methods

Recursive coordinate bisection

The simplest form of geometric partitioning is recursive coordinate bisection (RCB) [91, 101]. In
the RCB algorithm, the vertices of the graph are projected onto one of the coordinate axes, and
the vertex set is partitioned around a hyperplane through the median of the projected coordinates.
Each resulting subgraph is then partitioned along a different coordinate axis until the desired
number of subgraphs is obtained.

Because of the simplicity of the algorithm, RCB is very quick and cheap, but the quality of the
resultant separators can vary dramatically, depending on the embedding of the graph in IRd. For
example, consider a graph that is “+”-shaped. Clearly, the best (smallest) separator consists of
the vertices lying along a diagonal cut through the center of the graph. RCB, however, will find
the largest possible separators, in this case, planar cuts through the centers of the horizontal and
vertical components of the graph.

Inertia-based slicing

Williams [101] noted that RCB had poor worst case performance, and suggested that it could
be improved by slicing orthogonal to the principal axes of inertia, rather than orthogonal to the
coordinate axes. Farhat and Lesoinne implemented and evaluated this heuristic for partitioning
[33].

In three dimensions, let v = (vx, vy, vz)
t be the coordinates of vertex v in IR3. Then the inertia

matrix I of the vertices of a graph with respect to the origin is given by

I =






Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz






where,

Ixx =
∑

v∈V

v2
y + v2

z , Iyy =
∑

v∈V

v2
x + v2

z , Izz =
∑

v∈V

v2
x + v2

y

and, for i, j ∈ {x, y, z}, i 6= j,

Iij = Iji = −
∑

v∈V

vivj

158 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

The eigenvectors of the inertia matrix are the principal axes of the vertex distribution. The
eigenvalues of the inertia matrix are the principal moments of inertia. Together, the principal axes
and principal moments of inertia define the inertia ellipse; the axes of the ellipse are the principal
axes of inertia, and the axis lengths are the square roots of the corresponding principal moments.
Physically, the size of the principal moments reflect how the mass of the system is distributed with
respect to the corresponding axis - the larger the principal moment, the more mass is concentrated
at a distance from the axis.

Let I1, I2, and I3 denote the principal axes of inertia corresponding to the principal moments
α1 ≤ α2 ≤ α3. Farhat and Lesoinne projected the vertex coordinates onto I1, the axis about
which the mass of the system is most tightly clustered, and partitioned using a planar cut through
the median. This method typically yielded a good initial separator, but did not perform as well
recursively on their test mesh - a regularly structured “T”-shape.

Farhat and Lesoinne did not present any results on the theoretical properties of the inertia
slicing method. In fact, there are pathological cases in which the inertia method can be shown to
yield a very poor separator. Consider, for example, a “+”-shape in which the horizontal bar is
very wide and sparse, while the vertical bar is relatively narrow but dense. I1 will be parallel to
the horizontal axis, but a cut perpendicular to this axis through the median will yield a very large
separator. A diagonal cut will yield the smallest separator, but will not be generated with this
method.

Gremban, Miller, and Teng show how to use moment of inertia to improve the geometric par-
titioning algorithm.

10.4.5 Partitioning Software

• Chaco written by Bruce Hendrickson and Rob Leland. To get code send email to ba-
hendr@cs.sandia.gov (Bruce Hendrickson).

• Matlab Mesh Partitioning Toolbox: written by Gilbert and Teng. It includes both edge and
vertex separators, recursive bipartition, nested dissection ordering, visualizations and demos,
and some sample meshes. The complete toolbox is available by anonymous ftp from machine
ftp.parc.xerox.com as file /pub/gilbert/meshpart.uu.

• Spectral code: Pothen, Simon, and Liou.

10.5 Load-Balancing N-body Simulation for Non-uniform Parti-
cles

The discussion of Chapter ?? was focused on particles that are more or less uniformly distributed.
However, in practical simulations, particles are usually not uniformly distributed. Particles may
be highly clustered in some regions and relatively scattered in some other regions. Thus, the
hierarchical tree is adaptively generated, with smaller box for regions of clustered particles. The
computation and communication pattern of a hierarchical method becomes more complex and often
is not known explicitly in advance.

10.5.1 Hierarchical Methods of Non-uniformly Distributed Particles

In this chapter, we use the following notion of non-uniformity: We say a point set P = {p1, ..., pn}
in d dimensions is µ-non-uniform if the hierarchical tree generated for P has height log2d(n/m)+µ.

Preface 159

In other words, the ratio of the size of smallest leaf-box to the root-box is 1/2log
2d (n/m)+µ. In

practice, µ is less than 100.

The Barnes-Hut algorithm, as an algorithm, can be easily generalized to the non-uniform case.
We describe a version of FMM for non-uniformly distributed particles. The method uses the box-
box interaction. FMM tries to maximize the number of FLIPs among large boxes and also tries to
FLIP between roughly equal sized boxes, a philosophy which can be described as: let parents do as
much work as possible and then do the left-over work as much as possible before passing to the next
generation. Let c1, ..., c2d be the set of child-boxes of the root-box of the hierarchical tree. FMM
generates the set of all interaction-pairs of boxes by taking the union of Interaction-pair(ci, cj) for
all 1 ≤ i < j ≤ 2d, using the Interaction-Pair procedure defined below.

Procedure Interaction-Pair (b1, b2)

• If b1 and b2 are β-well-separated, then (b1, b2) is an interaction-pair.

• Else, if both b1 and b2 are leaf-boxes, then particles in b1 and b2 are near-field particles.

• Else, if both b1 and b2 are not leaf-boxes, without loss of generality, assuming that b2 is at
least as large as b1 and letting c1, ..., c2d be the child-boxes of b2, then recursively decide
interaction pair by calling: Interaction-Pair(b1,ci) for all 1 ≤ i ≤ 2d.

• Else, if one of b1 and b2 is a leaf-box, without loss of generality, assuming that b1 is a leaf-box
and letting c1, ..., c2d be the child-boxes of b2, then recursively decide interaction pairs by
calling: Interaction-Pair(b1,ci) for all 1 ≤ i ≤ 2d.

FMM for far-field calculation can then be defined as: for each interaction pair (b1, b2), letting
Φp

i () (i = 1, 2) be the multipole-expansion of bi, flip Φp
1() to b2 and add to b2’s potential Taylor-

expansion. Similarly, flip Φp
2() to b1 and add to b1’s potential Taylor-expansion. Then traverse

down the hierarchical tree in a preordering, shift and add the potential Taylor-expansion of the
parent box of a box to its own Taylor-expansion.

Note that FMM for uniformly distributed particles has a more direct description (see Chapter
??).

10.5.2 The Communication Graph for N-Body Simulations

In order to efficiently implement an N-body method on a parallel machine, we need to understand
its communication pattern, which can be described by a graph that characterizes the pattern of
information exchange during the execution of the method. The communication graph is defined on
basic computational elements of the method. The basic elements of hierarchical N-body methods
are boxes and points, where points give the locations of particles and boxes are generated by
the hierarchical method. Formally, the communication graph is an edge-weighted directed graph,
where the edges describe the pattern of communication and the weight on an edge specifies the
communication requirement along the edge.

A Refined FMM for Non-Uniform Distributions

For parallel implementation, it is desirable to have a communication graph that uses small edge-
weights and has small in- and out-degrees. However, some boxes in the set of interaction-pairs
defined in the last section may have large degree!

FMM described in the last subsection has a drawback which can be illustrated by the following
2D example. Suppose the root-box is divided into four child-boxes A, B, C, and D. Assume further

160 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

A B

C D

Figure 10.14: A non-uniform example

that boxes A, B and C contains less than m (< 100) particles, and most particles, say n of them,
are uniformly distributed in D, see Figure 10.14. In FMM, we further recursively divide D by
log4(n/m) levels. Notice that A, B, and C are not well-separated from any box in D. Hence the
FMM described in the previous subsection will declare all particles of D as near-field particles of
A, B, and C (and vice versa). The drawback is two-folds: (1) From the computation viewpoint, we
cannot take advantage of the hierarchical tree of D to evaluate potentials in A, B, and C. (2) From
the communication viewpoint, boxes A, B, and C have a large in-degree in the sense that each
particle in these boxes need to receive information from all n particles in D, making partitioning
and load balancing harder. Notice that in BH most boxes of D are well-separated from particles in
A, B, and C. Hence the well-separation condition is different in BH: because BH uses the particle-
box interaction, the well-separation condition is measured with respect to the size of the boxes in
D. Thus most boxes are well-separated from particles in A, B, and C. In contrast, because FMM
applies the FLIP operation, the well-separation condition must measure up against the size of the
larger box. Hence no box in D is well-separated from A, B, and C.

Our refined FMM circumvents this problem by incorporating the well-separation condition of
BH into the Interaction-Pair procedure: if b1 and b2 are not well-separated, and b1, the larger of
the two, is a leaf-box, then we use a well-separation condition with respect to b2, instead of to b1,
and apply the FLIP operation directly onto particles in the leaf-box b1 rather than b1 itself.

We will define this new well-separation condition shortly. First, we make the following ob-
servation about the Interaction-Pair procedure defined in the last subsection. We can prove, by
a simple induction, the following fact: if b1 and b2 are an interaction-pair and both b1 and b2

are not leaf-boxes, then 1/2 ≤ size(b1)/size(b2) ≤ 2. This is precisely the condition that FMM
would like to maintain. For uniformly distributed particles, such condition is always true between
any interaction-pair (even if one of them is a leaf-box). However, for non-uniformly distributed
particles, if b1, the larger box, is a leaf-box, then b1 could be much larger than b2.

The new β-well-separation condition, when b1 is a leaf-box, is then defined as: b1 and b2 are
β-well-separated if b2 is well-separated from all particles of b1 (as in BH). Notice, however, with the
new condition, we can no longer FLIP the multipole expansion of b1 to a Taylor-expansion for b2.
Because b1 has only a constant number of particles, we can directly evaluate the potential induced
by these particles for b2. This new condition makes the FLIP operation of this special class of
interaction-pairs uni-directional: We only FLIP b2 to b1.

We can describe the refined Interaction-Pair procedure using modified well-separation condition
when one box is a leaf-box.

Procedure Refined Interaction-Pair (b1, b2)

• If b1 and b2 are β-well-separated and 1/2 ≤ size(b1)/size(b2) ≤ 2, then (b1, b2) is a bi-

Preface 161

directional interaction-pair.

• Else, if the larger box, without loss of generality, b1, is a leaf-box, then the well-separation
condition becomes: b2 is well-separated from all particles of b1. If this condition is true, then
(b1, b2) is a uni-directional interaction-pair from b2 to b1.

• Else, if both b1 and b2 are leaf-boxes, then particles in b1 and b2 are near-field particles.

• Else, if both b1 and b2 are not leaf-boxes, without loss of generality, assuming that b2 is at
least as large as b1 and letting c1, ..., c2d be the child-boxes of b2, then recursively decide
interaction-pairs by calling: Interaction-Pair(b1,ci) for all 1 ≤ i ≤ 2d.

• Else, if one of b1 and b2 is a leaf-box, without loss of generality, assuming that b1 is a leaf
box and letting c1, ..., c2d be the child-boxes of b2, then recursively decide interaction pairs
by calling: Interaction-Pair(b1,ci) for all 1 ≤ i ≤ 2d.

Let c1, ..., c2d be the set of child-boxes of the root-box of the hierarchical tree. Then the
set of all interaction-pair can be generated as the union of Refined-Interaction-Pair(ci, cj) for all
1 ≤ i < j ≤ 2d.

The refined FMM for far-field calculation can then be defined as: for each bi-directional inter-
action pair (b1, b2), letting Φp

i () (i = 1, 2) be the multipole expansion of bi, flip Φp
1() to b2 and

add to b2’s potential Taylor-expansion. Similarly, flip Φp
2() to b1 and add to b1’s potential Taylor-

expansion. Then traverse down the hierarchical tree in a preordering, shift and add the potential
Taylor-expansion of the parent box of a box to its own Taylor-expansion. For each uni-directional
interaction pair (b1, b2) from b2 to b1, letting Φp

2() be the multipole-expansion of b2, evaluate Φp
2()

directly for each particle in b2 and add its potential.

Hierarchical Neighboring Graphs

Hierarchical methods (BH and FMM) explicitly use two graphs: the hierarchical tree which connects
each box to its parent box and each particle to its leaf-box, and the near-field graph which connects
each box with its near-field boxes. The hierarchical tree is generated and used in the first step
to compute the multipole expansion induced by each box. We can use a bottom-up procedure to
compute these multipole expansions: First compute the multipole expansions at leaf-boxes and
then SHIFT the expansion to the parent boxes and then up the hierarchical tree until multipole-
expansions for all boxes in the hierarchical tree are computed.

The near-field graph can also be generated by the Refined-Interaction-Pair procedure. In Section
10.5.3, we will formally define the near-field graph.

Fast-Multipole Graphs (FM)

The Fast-Multipole graph, FMβ , models the communication pattern of the refined FMM. It is a
graph defined on the set of boxes and particles in the hierarchical tree. Two boxes b1 and b2 are
connected in FMβ iff (1) b1 is the parent box of b2, or vice versa, in the hierarchical tree; or (2)
(b1, b2) is an interaction-pair generated by Refined-Interaction-Pair defined in Section 10.5.2. The
edge is bi-directional for a bi-directional interaction-pair and uni-directional for a uni-directional
interaction-pair. Furthermore, each particle is connected with the box that contains the particle.

The following Lemma that will be useful in the next section.

162 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Lemma 10.5.1 The refined FMM flips the multipole expansion of b2 to b1 if and only if (1) b2

is well-separated from b1 and (2) neither the parent of b2 is well-separated from b1 nor b2 is well-
separated from the parent of b1.

It can be shown that both in- and out-degrees of FMβ are small.

Barnes-Hut Graphs (BH)

BH defines two classes of communication graphs: BHβ
S and BHβ

P . BHβ
S models the sequential

communication pattern and BHβ
P is more suitable for parallel implementation. The letters S and

P , in BHβ
S and BHβ

P , respectively, stand for “Sequential” and “Parallel”.

We first define BHβ
S and show why parallel computing requires a different communication graph

BHβ
P to reduce total communication cost.

The graph BHβ
S of a set of particles P contains two sets of vertices: P, the particles, and B, the

set of boxes in the hierarchical tree. The edge set of the graph BHβ
S is defined by the communication

pattern of the sequential BH. A particle p is connected with a box b if in BH, we need to evaluate
p against b to compute the force or potential exerted on p. So the edge is directed from b to p.
Notice that if p is connected with b, then b must be well-separated from p. Moreover, the parent of
b is not well-separated from p. Therefore, if p is connected with b in BHβ

S , then p is not connected
to any box in the subtree of b nor to any ancestor of b.

In addition, each box is connected directly with its parent box in the hierarchical tree and each
point p is connected its leaf-box. Both types of edges are bi-directional.

Lemma 10.5.2 Each particle is connected to at most O(log n + µ) number of boxes. So the in-

degree of BHβ
S is bounded by O(log n + µ).

Notice, however, BHβ
S is not suitable for parallel implementation. It has a large out-degree.

This major drawback can be illustrated by the example of n uniformly distributed particles in two
dimensions. Assume we have four processors. Then the “best” way to partition the problem is to
divide the root-box into four boxes and map each box onto a processor. Notice that in the direct
parallel implementation of BH, as modeled by BHβ

S , each particle needs to access the information
of at least one boxes in each of the other processors. Because each processor has n/4 particles, the
total communication overhead is Ω(n), which is very expensive.

The main problem with BHβ
S is that many particles from a processor need to access the in-

formation of the same box in some other processors (which contributes to the large out-degree).
We show that a combination technique can be used to reduce the out-degree. The idea is to com-
bine the “same” information from a box and send the information as one unit to another box on
a processor that needs the information. We will show that this combination technique reduces
the total communication cost to O(

√
n log n) for the four processor example, and to O(

√
pn log n)

for p processors. Similarly, in three dimensions, the combination technique reduces the volume of
messages from Ω(n log n) to O(p1/3n2/3(log n)1/3).

We can define a graph BHβ
P to model the communication and computation pattern that uses

this combination technique. Our definition of BHβ
P is inspired by the communication pattern of

the refined FMM. It can be shown that the communication pattern of the refined FMM can be
used to guide the message combination for the parallel implementation of the Barnes-Hut method!

The combination technique is based on the following observation: Suppose p is well-separated
from b1 but not from the parent of b1. Let b be the largest box that contains p such that b is

Preface 163

well-separated from b1, using the well-separation definition in Section 10.5.2. If b is not a leaf-box,
then (b, b1) is a bi-directional interaction-pair in the refined FMM. If b is a leaf-box, then (b, b1) is
a uni-directional interaction-pair from b1 to b. Hence (b, b1) is an edge of FMβ . Then, any other
particle q contained in b is well-separated from b1 as well. Hence we can combine the information
from b1 to p and q and all other particles in b as follows: b1 sends its information (just one copy) to
b and b forwards the information down the hierarchical tree, to both p and q and all other particles
in b. This combination-based-communication scheme defines a new communication graph BHβ

P for
parallel BH: The nodes of the graph are the union of particles and boxes, i.e., P ∪ B(P). Each
particle is connected to the leaf-box it belongs to. Two boxes are connected iff they are connected
in the Fast-Multipole graph. However, to model the communication cost, we must introduce a
weight on each edge along the hierarchical tree embedded in BHβ

P , to be equal to the number of
data units needed to be sent along that edge.

Lemma 10.5.3 The weight on each edge in BHβ
P is at most O(log n + µ).

It is worthwhile to point out the difference between the comparison and communication patterns
in BH. In the sequential version of BH, if p is connected with b, then we have to compare p

against all ancestors of b in the computation. The procedure is to first compare p with the root
of the hierarchical tree, and then recursively move the comparison down the tree: if the current
box compared is not well-separated from p, then we will compare p against all its child-boxes.
However, in terms of force and potential calculation, we only evaluate a particle against the first
box down a path that is well-separated from the particle. The graphs BHβ

S and BHβ
P capture the

communication pattern, rather than the comparison pattern. The communication is more essential
to force or potential calculation. The construction of the communication graph has been one of the
bottlenecks in load balancing BH and FMM on a parallel machine.

10.5.3 Near-Field Graphs

The near-field graph is defined over all leaf-boxes. A leaf-box b1 is a near-field neighbor of a leaf-box
b if b1 is not well-separated from some particles of b. Thus, FMM and BH directly compute the
potential at particles in b induced by particles of b1.

There are two basic cases: (1) if size(b1) ≤ size(b), then we call b1 a geometric near-field
neighbor of b. (2) if size(b1) > size(b), then we call b1 a hierarchical near-field neighbor of b. In
the example of Section 10.5.2, A, B, C are hierarchical near-field neighbors of all leaf-boxes in D;
while A, B, and C have some geometric near-field neighbors in D.

We introduce some notations. The geometric in-degree of a box b is the number of its geometric
near-field neighbors. The geometric out-degree of a box b is the number of boxes to which b is the
geometric near-field neighbors. The hierarchical in-degree of a box b is the number of its hierarchical
near-field neighbors. We will define the hierarchical out-degree of a box shortly.

It can be shown that the geometric in-degree, geometric out-degree, and hierarchical in-degree
are small. However, in the example of Section 10.5.2, A, B, and C are hierarchical near-field
neighbors for all leaf-boxes in D. Hence the number of leaf-boxes to which a box is a hierarchical
near-field neighbor could be very large. So the near-field graph defined above can have a very large
out-degree.

We can use the combination technique to reduce the degree when a box b is a hierarchical
near-field neighbor of a box b1. Let b2 be the ancestor of b1 of the same size as b. Instead of b

sending its information directly to b1, b sends it to b2 and b2 then forwards the information down
the hierarchical tree. Notice that b and b2 are not well-separated. We will refer to this modified

164 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

near-field graph as the near-field graph, denoted by NF β . We also define the hierarchical out-degree
of a box b to be the number of edges from b to the set of non-leaf-boxes constructed above. We
can show that the hierarchical out-degree is also small.

To model the near-field communication, similar to our approach for BH, we introduce a weight
on the edges of the hierarchical tree.

Lemma 10.5.4 The weight on each edge in NF β is at most O(log n + µ).

10.5.4 N-body Communication Graphs

By abusing notations, let FMβ = FMβ ∪ NF β and BHβ
P = BHβ

P ∪ NF β . So the communica-
tion graph we defined simultaneously supports near-field and far-field communication, as well as
communication up and down the hierarchical tree. Hence by partitioning and load balancing FM β

and BHβ
P , we automatically partition and balance the hierarchical tree, the near-field graph, and

the far-field graph.

10.5.5 Geometric Modeling of N-body Graphs

Similar to well-shaped meshes, there is a geometric characterization of N-body communication
graphs. Instead of using neighborhood systems, we use box-systems. A box-system in IRd is a set
B = {B1, . . . , Bn} of boxes. Let P = {p1, . . . , pn} be the centers of the boxes, respectively. For
each integer k, the set B is a k-ply box-system if no point p ∈ IRd is contained in more than k of
int(B1), . . . , int(Bn).

For example, the set of all leaf-boxes of a hierarchical tree forms a 1-ply box-system. The
box-system is a variant of neighborhood system of Miller, Teng, Thurston, and Vavasis [67], where
a neighborhood system is a collection of Euclidean balls in IRd. We can show that box-systems can
be used to model the communication graphs for parallel adaptive N-body simulation.

Given a box-system, it is possible to define the overlap graph associated with the system:

Definition 10.5.1 Let α ≥ 1 be given, and let {B1, . . . , Bn} be a k-ply box-system. The α-overlap
graph for this box-system is the undirected graph with vertices V = {1, . . . , n} and edges

E = {(i, j) : Bi ∩ (α · Bj) 6= ∅ and (α · Bi) ∩ Bj 6= ∅}.

The edge condition is equivalent to: (i, j) ∈ E iff the α dilation of the smaller box touches the
larger box.

As shown in [96], the partitioning algorithm and theorem of Miller et al can be extended to
overlap graphs on box-systems.

Theorem 10.5.1 Let G be an α-overlap graph over a k-ply box-system in IRd, then G can be
partitioned into two equal sized subgraphs by removing at most O(αk1/dn1−1/d) vertices. Moreover,
such a partitioning can be computed in linear time sequentially and in parallel O(n/p) time with p
processors.

The key observation is the following theorem.

Theorem 10.5.2 Let P = {p1, . . . , pn} be a point set in IRd that is µ-non-uniform. Then the set

of boxes B(P) of hierarchical tree of P is a (log2d n+µ)-ply box-system and FMβ(P) and BHβ
P (P)

are subgraphs of the 3β-overlap graph of B(P).

Preface 165

Therefore,

Theorem 10.5.3 Let G be an N-body communication graph (either for BH or FMM) of a set of
particles located at P = {p1, ..., pn} in IRd (d = 2 or 3). If P is µ-non-uniform, then G can
be partitioned into two equal sized subgraphs by removing at most O(n1−1/d(log n + µ)1/d) nodes.
Moreover, such a partitioning can be computed in linear time sequentially and in parallel O(n/p)
time with p processors.

166 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Lecture 11

Mesh Generation

An essential step in scientific computing is to find a proper discretization of a continuous domain.
This is the problem of mesh generation. Once we have a discretization or sometimes we just say a
“mesh”, differential equations for flow, waves, and heat distribution are then approximated by finite
difference or finite element formulations. However, not all meshes are equally good numerically.
Discretization errors depend on the geometric shape and size of the elements while the computa-
tional complexity for finding the numerical solution depends on the number of elements in the mesh
and often the overall geometric quality of the mesh as well.

The most general and versatile mesh is an unstructured triangular mesh. Such a mesh is
simply a triangulation of the input domain (e.g., a polygon), along with some extra vertices,
called Steiner points. A triangulation is a decomposition of a space into a collection of interior
disjoint simplices so that two simplices can only intersect at a lower dimensional simplex. We
all know that in two dimensions, a simplex is a triangle and in three dimensions a simplex is a
tetrahedron. A triangulation can be obtained by triangulating a point set, that form the vertices
of the triangulation.

Even among triangulations some are better than others. Numerical errors depend on the quality
of the triangulation, meaning the shapes and sizes of triangles.

In order for a mesh to be useful in approximating partial differential equations, it is necessary
that discrete functions generated from the mesh (such as the piecewise linear functions) be capable
of approximating the solutions sought. Classical finite element theory [18] shows that a sufficient
condition for optimal approximation results to hold is that the minimum angle or the aspect ratio of
each simplex in the triangulation be bounded independently of the mesh used; however, Babuska [4]
shows that while this is sufficient, it is not a necessary condition. See Figure ?? for a triangulation
whose minimum degree is at least 20 degree.

In summary, properties of a good mesh are:

• Fills the space

• Non-overlapping (
∑

areas = total area)

• Conforming Mesh (every edge shared by exactly 2 triangles)

• High Quality Elements (approximately equilateral triangles)

Automatic mesh generation is a relatively new field. No mathematically sound procedure for
obtaining the ‘best’ mesh distribution is available. The criteria are usually heuristic.

The input description of physical domain has two components: the geometric definition of the
domain and the numerical requirements within the domain. The geometric definition provides the

167

168 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 11.1: A well-shaped triangulation

boundary of the domain either in the form of a continuous model or of a discretized boundary
model. Numerical requirements within the domain are typically obtained from an initial numerical
simulation on a preliminary set of points. The numerical requirements obtained from the initial
point set define an additional local spacing function restricting the final point set.

An automatic mesh generator try to generate an additional points to the internally and bound-
ary of the domain to smooth out the mesh generation and concentrate mesh density where necessary
- to optimize the total number of mesh points.

11.1 How to Describe a Domain?

The most intuitive and obvious structure of a domain (for modeling a scientific problem) is its
geometry.

One way to describe the geometry is to use constructive solid geometry formula. In this ap-
proach, we have a set of basic geometric primitive shapes, such as boxes, spheres, half-spaces,
triangles, tetrahedra, ellipsoids, polygons, etc. We then define (or approximate) a domain as finite
unions, intersections, differences, and complementation of primitive shapes, i.e., by a well-structured
formula of a finite length of primitive shapes with operators that include union, intersection, dif-
ference, and complementation.

An alternative way is to discretize the boundary of the domain, and describes the domain as
a polygonal (polyhedral) object (perhaps with holes). Often we convert the constructive solid
geometry formula into the discretized boundary description for mesh generation.

For many computational applications, often, some other information of a domain and the prob-
lem are equally important for quality mesh generation.

The numerical spacing functions, typically denoted by h(x), is usually defined at a point x by
the eigenvalues of the Hessian matrix of the solution u to the governing partial differential equations
(PDEs) [4, 95, 69]. Locally, u behaves like a quadratic function

u(x + dx) =
1

2
(xHxT) + x∇u(x) + u(x),

where H is the Hessian matrix of u, the matrix of second partial derivatives. The spacing of mesh
points, required by the accuracy of the discretization at a point x, is denoted by h(x) and should
depend on the reciprocal of the square root of the largest eigenvalues of H at x.

Preface 169

Figure 11.2: Triangulation of well-spaced point set around a singularity

When solving a PDE numerically, we estimate the eigenvalues of Hessian at a certain set of
points in the domain based on the numerical approximation of the previous iteration [4, 95]. We
then expand the spacing requirement induced by Hessian at these points over the entire domain.

For a problem with a smooth change in solution, we can use a (more-or-less) uniform mesh
where all elements are of roughly equal size. On the other hand, for problem with rapid change in
solution, such as earthquake, wave, shock modeling, we may use much dense grinding in the area
of with high intensity. See Fig 11.2.So, the information about the solution structure can be of a
great value to quality mesh generation.

Other type of information may come in the process of solving a simulation problem. For example,
in adaptive methods, we may start with a much coarse and uniform grid. We then estimate the
error of the previous step. Based on the error bound, we then adaptively refine the mesh, e.g.,
make the area with larger error much more dense for the next step calculation. As we shall argue
later, unstructured mesh generation is more about finding the proper distribution of mesh point
then the discretization itself (this is a very personal opinion).

11.2 Types of Meshes

• Structured grids divide the domain into regular grid squares. For examples finite difference
gridding on a square grid. Matrices based on structured grids are very easy and fast to
assemble. Structured grids are easy to generate; numerical formulation and solution based
on structured grids are also relatively simple.

• Unstructured grids decompose the domain into simple mesh elements such as simplices
based on a density function that is defined by the input geometry or the numerical require-
ments (e.g., from error estimation). But the associated matrices are harder and slower to
assemble compared to the previous method; the resulting linear systems are also relatively
hard to solve. Most of finite element meshes used in practice are of the unstructured type.

• Hybrid grids are generated by first decomposing the domain into non-regular domain and
then decomposing each such domain by a regular grid. Hybrid grids are often used in domain
decomposition.

Structured grids are much easy to generate and manipulate. The numerical theory of this
discretization is better understood. However, its applications is limited to problems with simple
domain and smooth changes in solution. For problems with complex geometry whose solution
changes rapidly, we need to use an unstructured mesh to reduce the problem size. For example,

170 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 11.3: A quadtree

when modeling earthquake we want a dense discretization near the quake center and a sparse
discretization in the regions with low activities. It would be waste to give regions with low activities
as fine a discretization as the regions with high activities. Unstructured meshes are especially
important for three dimensional problems.

The adaptability of unstructured meshes comes with new challenges, especially for 3D problems.
However, the numerical theory becomes more difficult – this is an outstanding direction for future
research; the algorithmic design becomes much harder.

11.3 Refinement Methods

A mesh generator usually does two things: (1) it generates a set of points that satisfies both
geometric and numerical conditions imposed on the physical domain. (2) it builds a robust and
well-shaped meshes over this point set, e.g., a triangulation of the point set. Most mesh generation
algorithms merge the two functions, and generate the point set implicitly as part of the mesh
generation phase. A most useful technique is to generate point set and its discretization by an
iterative refinement. We now discuss hierarchical refinement and Delaunay refinement, two of the
most commonly used refinement methods.

11.3.1 Hierarchical Refinement

The hierarchical refinement uses quadtrees in two dimensions and octtrees in three dimensions.
The basic philosophy of using quad- and oct-trees in meshes refinements and hierarchical N-body
simulation is the same: adaptively refining the domain by selectively and recursively divide boxes
enable us to achieve numerical accuracy with close to an optimal discretization. The definition of
quad- and oct-tree can be found in Chapter ??. Figure 11.3 shows a quad-tree.

In quadtree refinement of an input domain, we start with a square box encompassing the
domain and then adaptively splitting a box into four boxes recursively until each box small enough
with respect to the geometric and numerical requirement. This step is very similar to quad-tree
decomposition for N-body simulation. However, in mesh generation, we need to ensure that the
mesh is well-shaped. This requirement makes mesh generation different from hierarchical N-body
approximation. In mesh generate, we need to generate a set of smooth points. In the context of
quad-tree refinement, it means that we need to make the quad-tree balanced in the sense that no
leaf-box is adjacent to a leaf-box more than twice its side length.

Preface 171

200 300 400 500 600 700 800

200

300

400

500

600

700

800

900

Figure 11.4: A well-shaped mesh generated by quad-tree refinement

With adaptive hierarchical trees, we can “optimally” approximate any geometric and numerical
spacing function. The proof of the optimality can be found in the papers of Bern, Eppstein, and
Gilbert for 2D and Mitchell and Vavasis for 3D. Formal discuss of the numerical and geometric
spacing function can be found in the point generation paper of Miller, Talmor and Teng.

The following procedure describes the basic steps of hierarchical refinement.

1. Construct the hierarchical tree for the domain so that the leaf boxes approximate the numer-
ical and geometric spacing functions.

2. Balance the hierarchical tree.

3. Warping and triangulation: If a point is too close to a boundary of its leaf box then one of
the corners collapses to that point.

11.3.2 Delaunay Triangulation

Suppose P = {p1, . . . , pn} is a point set in d dimensions. The convex hull of d+1 affinely independent
points from P forms a Delaunay simplex if the circumscribed ball of the simplex contains no point
from P in its interior. The union of all Delaunay simplices forms the Delaunay diagram, DT (P).
If the set P is not degenerate then the DT (P) is a simplex decomposition of the convex hull of P .
We will sometimes refer to the Delaunay simplex as a triangle or a tetrahedron.

Associated with DT (P) is a collection of balls, called Delaunay balls, one for each cell in DT (P).
The Delaunay ball circumscribes its cell. When points in P are in general position, each Delaunay
simplex define a Delaunay ball, its circumscribed ball. By definition, there is no point from P lies
in the interior of a Delaunay ball. We denote the set of all Delaunay balls of P by DB(P).

The geometric dual of Delaunay Diagram is the Voronoi Diagram, which of consists a set of
polyhedra V1, . . . , Vn, one for each point in P , called the Voronoi Polyhedra. Geometrically, Vi is
the set of points p ∈ IRd whose Euclidean distance to pi is less than or equal to that of any other
point in P . We call pi the center of polyhedra Vi. For more discussion, see [78, 31].

The DT has some very desired properties for mesh generation. For example, among all triangu-
lations of a point set in 2D, the DT maximizes the smallest angle, it contains the nearest-neighbors
graph, and the minimal spanning tree. Thus Delaunay triangulation is very useful for computer
graphics and mesh generation in two dimensions. Moreover, discrete maximum principles will only

172 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

exist for Delaunay triangulations. Chew [17] and Ruppert [84] have developed Delaunay refinement
algorithms that generate provably good meshes for 2D domains.

Notice that an internal diagonal belongs to the Delaunay triangulation of four points if the sum
of the two opposing angles is less than π.

A 2D Delaunay Triangulation can be found by the following simple algorithm: FLIP algorithm

• Find any triangulation (can be done in O(n lg n) time using divide and conquer.)

• For each edge pq, let the two faces the edge is in be prq and psq. Then pq is not an local
Delaunay edge if the interior the circumscribed circle of prq contains s. Interestingly, this
condition also mean that the interior of the circumscribed circle of psq contains r and the
sum of the angles prq and psq is greater than π. We call the condition that the sum of the
angles of prq and psq is no more than π the angle condition. Then, if pq does not satisfy the
angle property, we just flip it: remove edge pq from T, and put in edge rs. Repeat this until
all edges satisfy the angle property.

It is not too hard to show that if FLIP terminates, it will output a Delaunay Triangulation.
A little addition geometric effort can show that the FLIP procedure above, fortunately, always
terminate after at most O(n2) flips.

The following is an interesting observation of Guibas, Knuth and Sharir. If we choose a random
ordering π of from {1, ..., n} to {1, ..., n} and permute the points based on π: pπ(1) . . . pπ(n). We
then incrementally insert the points into the the current triangulation and perform flip if needed.
Notice that the initial triangulation is a triangle formed by the first three points. It can be shown
that the expected number of flips of the about algorithm is O(n log n). This gives a randomized
O(n log n) time DT algorithm.

11.3.3 Delaunay Refinement

Even though the Delaunay triangulation maximize the smallest angles. The Delaunay triangulation
of most point sets are bad in the sense that one of the triangles is too ’skinny’. In this case, Chew
and Ruppert observed that we can refine the Delaunay triangulation to improve its quality. This
idea is first proposed by Paul Chew. In 1992, Jim Ruppert gave a quality guaranteed procedure.

• Put a point at the circumcenter of the skinny triangle

• if the circum-center encroaches upon an edge of an input segment, split an edge adding its
middle point; otherwise add the circumcenter.

• Update the Delaunay triangulation by FLIPPING.

A point encroaches on an edge if the point is contained in the interior of the circle of which the
edge is a diameter. We can now define two operations, Split-Triangle and Split-Segment

Split-Triangle(T)

• Add circumcenter C of Triangle T

• Update the Delaunay Triangulation (P ∪ C)

Preface 173

Split-Segment(S)

• Add midpoint m

• Update the Delaunay Triangulation (P ∪ M)

The Delaunay Refinement algorithm then becomes

• Initialize

– Perform a Delaunay Triangulation on P

– IF some segment, l, is not in the Delaunay Triangle of P , THEN Split-Segment (l)

• Repeat the following until α > 25◦

– IF T is a skinny triangle, try to Split(T)

– IF C of T is ’close’ to segment S then Split-Seg(S)

– ELSE Split Triangle (T)

The following theory was then stated, without proof. The proof is first given by Jim Ruppert in
his Ph.D thesis from UC. Berkeley.

Theorem 11.3.1 Not only does the Delaunay Refinement produce all triangles so that MIN α >
25◦, the size of the mesh it produces is no more than C ∗ Optimal(size).

11.4 Working With Meshes

• Smoothing: Move individual points to improve the mesh.

• Laplacian Smoothing: Move every element towards the center of mass of neighbors

• Refinement: Have a mesh, want smaller elements in a certain region. One option is to put a
circumscribed triangles inside the triangles you are refining. Another approach is to split the
longest edge on the triangles. However, you have to be careful of hanging nodes while doing
this.

11.5 Unsolved Problems

There still is no good algorithm to generate meshes of shapes. There has been a fair amount of
research and this is an important topic, but at the current time the algorithms listed above are
merely best efforts and require a lot of work and/or customization to produce good meshes. A
good algorithm would fill the shape with quadrilaterals and run without any user input, beyond
providing the geometry to be meshed. The holy grail of meshing remains filling a 3-D shape with
3-D blocks.

174 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Lecture 12

Support Vector Machines and
Singular Value Decomposition

Andrew Hogue April 29, 2004

12.1 Support Vector Machines

Support Vector Machines, or SVMs, have emerged as an increasingly popular algorithm for effec-
tively learning a method to categorize objects based on a set of properties. SVMs were originally
introduced by Vapnik [97], although his work was in Russian and was not translated to English
for several years. Recently, more attention has been paid to them, and there are several excellent
books and tutorials [14, 51, 98, 99].

We first develop the notion of learning a categorization function, then describe the SVM algo-
rithm in more detail, and finally provide several examples of its use.

12.1.1 Learning Models

In traditional programming, a function is given a value x as input, and computes a value y = h(x)
as its output. In this case, the programmer has an intimate knowledge of the function h(x), which
he explicitly defines in his code.

An alternative approach involves learning the function h(x). There are two methods to generate
this function. In unsupervised learning, the program is given a set of objects x and is asked to privide
a function h(x to categorize them without any a priori knowledge about the objects.

Support Vector Machines, on the other hand, represent one approach to supervised learning.
In supervised learning, the program is given a training set of pairs (x,y), where x are the objects
being classified and y are a matching set of categories, one for each xi. For example, an SVM
attempting to categorize handwriting samples might be given a training set which maps several
samples to the correct character. From these samples, the supervised learner induces the function
y = h(x) which attempts to return the correct category for each sample. In the future, new samples
may be categorized by feeding them into the pre-learned h(x).

In learning problems, it is important to differentiate between the types of possible output for
the function y = h(x). There are three main types:

Binary Classification h(x) = y ∈ ±1 (The learner classifies objects into one of two groups.)

175

176 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 12.1: An example of a set of linearly separable objects.

Discrete Classification h(x) = y ∈ {1, 2, 3, ..., n} (The learner classifies objects into one of n
groups.)

Continuous Classification h(x) = y ∈ <n (The learner classifies objects in the space of n-
dimensional real numbers.)

As an example, to learn a linear regression, x could be a collection of data points. In this case, the
y = h(x) that is learned is the best fit line through the data points.

All learning methods must also be aware of overspecifying the learned function. Given a set of
training examples, it is often inappropriate to learn a function that fits these examples too well, as
the examples often include noise. An overspecified function will often do a poor job of classifying
new data.

12.1.2 Developing SVMs

A Support Vector Machine attempts to find a linear classification of a set of data. For dimension
d > 2 this classification is represented by a separating hyperplane. An example of a separating
hyperplane is shown in Figure 12.1. Not that the points in Figure 12.1 are linearly separable, that
is, there exists a hyperplane in <2 such that all oranges are on one side of the hyperplane and all
apples are on the other.

In the case of a linearly separable training set, the perceptron model [80] is useful for finding a
linear classifier. In this case, we wish to solve the equation

h(x) = wTx + b

subject to the constraints that h(x1) ≤ −1 and h(x2) ≥ +1, where x1 are the objects in category
1 and x2 are the objects in category 2. For example, in Figure 12.1, we would wish to satisfy:

h(orange) ≤ −1

h(apple) ≥ +1

The SVM method for finding the best separating hyperplane is to solve the following linear
program:

min
w,b

‖w‖2

2
subject to (12.1)

Preface 177

Figure 12.2: An example of a set of objects which are not linearly separable.

yi(w
T
i xi + b) ≥ 1, i = 1, ..., n (12.2)

This method works well for training sets which are linearly separable. However, there are also
many cases where the training set is not linearly separable. An example is shown in Figure 12.2.
In this case, it is impossible to find a separating hyperplane between the apples and oranges.

There are several methods for dealing with this case. One method is to add slack variables, εi

to the linear program:

min
w,b,ε

‖w‖2

2
+ c

∑

i

εi subject to

yi(w
T
i xi + b) ≥ 1 − εi, i = 1, ..., n

Slack variables allow some of the xi to “move” in space to “slip” onto the correct side of the
separating hyperplane. For instance, in Figure 12.2, the apples on the left side of the figure could
have associated εi which allow them to move to the right and into the correct category.

Another approach is to non-linearly distort space around the training set using a function Φ(xi):

min
w,b

‖w‖2

2
subject to

yi(w
T
i Φ(xi) + b) ≥ 1, i = 1, ..., n

In many cases, this distortion moves the objects into a configuration that is more easily separated
by a hyperplane. As mentioned above, one must be careful not to overspecify Φ(xi), as it could
create a function that is unable to cope easily with new data.

Another way to approach this problem is through the dual of the linear program shown in
Equations (12.1) and (12.2) above. If we consider those equations to be the primal, the dual is:

max
α

αT1 − αTHα

2
subject to

yTα = 0

α ≥ 0

Note that we have introduced Lagrange Multipliers αi for the dual problem. At optimality, we have

w =
∑

i

yiαixi

178 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 12.3: An example of classifying handwritten numerals. The graphs on the right show the
probabilities of each sample being classified as each number, 0-9.

This implies that we may find a separating hyperplane using

Hij = yi(x
T
i xj)yj

This dual problem also applies to the slack variable version using the constraints:

yTα = 0

c ≥ α ≥ 0

as well as the distorted space version:

Hij = yi(Φ(xi)
T Φ(xj))yj

12.1.3 Applications

The type of classification provided by Support Vector Machines is useful in many applications. For
example, the post office must sort hundreds of thousands of hand-written envelopes every day. To
aid in this process, they make extensive use of handwriting recognition software which uses SVMs
to automatically decipher handwritten numerals. An example of this classification is shown in
Figure 12.3.

Military uses for SVMs also abound. The ability to quickly and accurately classify objects in a
noisy visual field is essential to many military operations. For instance, SVMs have been used to
identify humans or artillery against the backdrop of a crowded forest of trees.

12.2 Singular Value Decomposition

Many methods have been given to decompose a matrix into more useful elements. Recently, one of
the most popular has been the singular value decomposition, or SVD. This decomposition has been

Preface 179

x A

Figure 12.4: The deformation of a circle using a matrix A.

known since the early 19th century [94].

The SVD has become popular for several reasons. First, it is stable (that is, small perturbations
in the input A result in small perturbations in the singular matrix Σ, and vice versa). Second, the
singular values σi provide an easy way to approximate A. Finally, there exist fast, stable algorithms
to compute the SVD [42].

The SVD is defined by

A = UΣVT

Both U and V are orthagonal matrices, that is, UTU = I and VTV = I. Σ is the singular matrix.
It is non-zero except for the diagonals, which are labeled with σi:

Σ =








σ1

σ2

· · ·
σn








There are several interesting facts associated with the SVD of a matrix. First, the SVD is
well-defined for any matrix A of size m x n, even for m 6= n. In physical space, if a matrix A is
applied to a unit hypercircle in n dimensions, it deforms it into a hyperellipse. The diameters of
the new hyperellipse are the singular values σi. An example is shown in Figure 12.4.

The singular values σi also have a close relation to its eigenvalues λi. The following table
enumerates some of these relations:

Matrix Type Relationship

Symmetric Positive Definite σi = λi

Symmetric σi = |λi|
General Case σ2

i = ith eigenvalue of ATA

These relationships often make it much more useful as well as more efficient to utilize the singular
value decomposition of a matrix rather than computing ATA, which is an intensive operation.

180 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 12.5: The approximation of an image using its SVD.

The SVD may also be used to approximate a matrix A with n singular values:

A =
n∑

i=1

σiuiv
T
i

≈
p
∑

i=1

σiuiv
T
i , p < n

where ui is the ith row of U and vT
i is the ith column of V. This is is also known as the “rank-p

approximation of A in the 2-norm or F-norm.”

This approximation has an interesting application for image compression. By taking an image
as a matrix of pixel values, we may find its SVD. The rank-p approximation of the image is a
compression of the image. For example, James Demmel approximated an image of his daugher for
the cover of his book Applied Numerical Linear Algebra, shown in Figure 12.5. Note that successive
approximations create horizontal and vertical “streaks” in the image.

The following MATLAB code will load an image of a clown and display its rank-p approximation:

>> load clown;

Preface 181

>> image(X);

>> colormap(map);

>> [U,S,V] = svd(X);

>> p=1; image(U(:,1:p)*S(1:p,1:p)*V(:,1:p)’);

The SVD may also be used to perform latent semantic indexing, or clustering of documents
based on the words they contain. We build a matrix A which indexes the documents along one
axis and the words along the other. Aij = 1 if word j appears in document i, and 0 otherwise. By
taking the SVD of A, we can use the singular vectors to represent the “best” subset of documents
for each cluster.

Finally, the SVD has an interesting application when using the FFT matrix for parallel com-
putations. Taking the SVD of one-half of the FFT matrix results in singular values that are
approximately one-half zeros. Similarly, taking the SVD of one-quarter of the FFT matrix results
in singular values that are approximately one-quarter zeros. One can see this phenomenon with
the following MATLAB code:

>> f = fft(eye(100));

>> g = f(1:50,51:100);

>> plot(svd(g),’*’);

These near-zero values provide an opportunity for compression when communicating parts of
the FFT matrix across processors [30].

182 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Bibliography

[1] N. Alon, P. Seymour, and R. Thomas. A separator theorem for non-planar graphs. In
Proceedings of the 22th Annual ACM Symposium on Theory of Computing, Maryland, May
1990. ACM.

[2] C. R. Anderson. An implementation of the fast multipole method without multipoles. SIAM
J. Sci. Stat. Comp., 13(4):932–947, July 1992.

[3] A. W. Appel. An efficient program for many-body simulation. SIAM J. Sci. Stat. Comput.,
6(1):85–103, 1985.

[4] I. Babuška and A.K. Aziz. On the angle condition in the finite element method. SIAM J.
Numer. Anal., 13(2):214–226, 1976.

[5] J. Barnes and P. Hut. A hierarchical O(n log n) force calculation algorithm Nature, 324
(1986) pp446-449.

[6] M. Bern, D. Eppstein, and J. R. Gilbert. Provably good mesh generation. J. Comp. Sys. Sci.
48 (1994) 384–409.

[7] M. Bern and D. Eppstein. Mesh generation and optimal triangulation. In Computing in
Euclidean Geometry, D.-Z. Du and F.K. Hwang, eds. World Scientific (1992) 23–90.

[8] M. Bern, D. Eppstein, and S.-H. Teng. Parallel construction of quadtrees and quality tri-
angulations. In Workshop on Algorithms and Data Structures, Springer LNCS 709, pages
188–199, 1993.

[9] G. Birkhoff and A. George. Elimination by nested dissection. Complexity of Sequential and
Parallel Numerical Algorithms, J. F. Traub, Academic Press, 1973.

[10] P. E. Bjørstad and O. B. Widlund. Iterative methods for the solution of elliptic problems on
regions partitioned into substructures. SIAM J. Numer. Anal., 23:1097-1120, 1986.

[11] G. E. Blelloch. Vector Models for Data-Parallel Computing. MIT-Press, Cambridge MA,
1990.

[12] J. A. Board, Z. S. Hakura, W. D. Elliott, and W. T. Ranklin. Saclable variants of multipole-
based algorithms for molecular dynamic applications. In Parallel Processing for Scientific
Computing, pages 295–300. SIAM, 1995.

[13] R. Bryant, Bit-level analysis of an SRT circuit, preprint, CMU (See
http://www.cs.cmu.edu:8001/afs/cs.cmu.edu/user/bryant/www/home.html)

183

184 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

[14] C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and
Knowledge Discovery, 2(2):121–167, 1998.

[15] V. Carpenter, compiler, http://vinny.csd.my.edu/pentium.html.

[16] T. F. Chan and D. C. Resasco. A framework for the analysis and construction of domain
decomposition preconditioners. UCLA-CAM-87-09, 1987.

[17] L. P. Chew. Guaranteed-quality triangular meshes. TR-89-983, Cornell, 1989.

[18] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North–Holland, 1978.

[19] K. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant, and S.-H. Teng. Approximating center
points with and without linear programming. In Proceedings of 9th ACM Symposium on
Computational Geometry, pages 91–98, 1993.

[20] T. Coe, Inside the Pentium FDIV bug, Dr. Dobb’s Journal 20 (April, 1995), pp 129–135.

[21] T. Coe, T. Mathisen, C. Moler, and V. Pratt, Computational aspects of the Pentium affair,
IEEE Computational Science and Engineering 2 (Spring 1995), pp 18–31.

[22] T. Coe and P. T. P. Tang, It takes six ones to reach a flaw, preprint.

[23] J. Conroy, S. Kratzer, and R. Lucas, Data parallel sparse LU factorization, in Parallel
Processing for Scientific Computing, SIAM, Philadelphia, 1994.

[24] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1992.

[25] L. Danzer, J. Fonlupt, and V. Klee. Helly’s theorem and its relatives. Proceedings of Symposia
in Pure Mathematics, American Mathematical Society, 7:101–180, 1963.

[26] J. Dongarra, R van de Geijn, and D. Walker, A look at scalable dense linear algebra libraries,
in Scalable High Performance Computer Conference, Williamsburg, VA, 1992.

[27] I. S. Duff, R. G. Grimes, and J. G. Lewis, Sparse matrix test problems, ACM TOMS, 15
(1989), pp. 1-14.

[28] A. L. Dulmage and N. S. Mendelsohn. Coverings of bipartite graphs. Canadian J. Math. 10,
pp 517-534, 1958.

[29] I. S. Duff. Parallel implementation of multifrontal schemes. Parallel Computing, 3, 193–204,
1986.

[30] A. Edelman, P. McCorquodale, and S. Toledo. The future fast fourier transform. SIAM
Journal on Scientific Computing, 20(3):1094–1114, 1999.

[31] H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs
on Theoretical CS. Springer-Verlag, 1987.

[32] D. Eppstein, G. L. Miller, and S.-H. Teng. A deterministic linear time algorithm for geometric
separators and its applications. In Proceedings of 9th ACM Symposium on Computational
Geometry, pages 99–108, 1993.

Bibliography 185

[33] C. Farhat and M. Lesoinne. Automatic partitioning of unstructured meshes for the parallel
solution of problems in computational mechanics. Int. J. Num. Meth. Eng. 36:745-764 (1993).

[34] J. Fixx, Games for the Superintelligent.

[35] I. Fried. Condition of finite element matrices generated from nonuniform meshes. AIAA J.
10, pp 219–221, 1972.

[36] M. Garey and M. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, Prentice-Hall, Englewood Cliffs, NJ, 1982.

[37] J. A. George. Nested dissection of a regular finite element mesh. SIAM J. Numerical Analysis,
10: 345–363, 1973.

[38] J. A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive Definite Systems.
Prentice-Hall, 1981.

[39] A. George, J. W. H. Liu, and E. Ng, Communication results for parallel sparse Cholesky
factorization on a hypercube, Parallel Comput. 10 (1989), pp. 287–298.

[40] A. George, M. T. Heath, J. Liu, E. Ng. Sparse Cholesky factorization on a local-memory
multiprocessor. SIAM J. on Scientific and Statistical Computing, 9, 327–340, 1988

[41] J. R. Gilbert, G. L. Miller, and S.-H. Teng. Geometric mesh partitioning: Implementation
and experiments. In SIAM J. Sci. Comp., to appear 1995.

[42] G. Golub and W. Kahan. Calculating the singular values and pseudoinverse of a matrix.
SIAM Journal on Numerical Analysis, 2:205–224, 1965.

[43] G. H. Golub and C. F. Van Loan. Matrix Computations, 2nd Edition. Johns Hopkins
University Press, 1989.

[44] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comp. Phys. 73
(1987) pp325-348.

[45] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay
and Voronoi diagrams. Algorithmica, 7:381–413, 1992.

[46] R. W. Hackney and J. W. Eastwood. Computer Simulation Using Particles. McGraw Hill,
1981.

[47] G. Hardy, J. E. Littlewood and G. Pólya. Inequalities. Second edition, Cambridge University
Press, 1952.

[48] D. Haussler and E. Welzl. ε-net and simplex range queries. Discrete and Computational
Geometry, 2: 127–151, 1987.

[49] N.J. Higham, The Accuracy of Floating Point Summation SIAM J. Scient. Comput. ,
14:783–799, 1993.

[50] Y. Hu and S. L. Johnsson. A data parallel implementation of hierarchical N-body methods.
Technical Report TR-26-94, Harvard University, 1994.

186 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

[51] T. Joachims. Text categorization with support vector machines: learning with many relevant
features. In Claire Nédellec and Céline Rouveirol, editors, Proceedings of ECML-98, 10th
European Conference on Machine Learning, number 1398, pages 137–142, Chemnitz, DE,
1998. Springer Verlag, Heidelberg, DE.

[52] M. T. Jones and P. E. Plassman. Parallel algorithms for the adaptive refinement and par-
titioning of unstructured meshes. Proc. Scalable High-Performance Computing Conf. (1994)
478–485.

[53] W. Kahan, A Test for SRT Division, preprint.

[54] F. T. Leighton. Complexity Issues in VLSI. Foundations of Computing. MIT Press, Cam-
bridge, MA, 1983.

[55] F. T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multi-
commodity flow problems with applications to approximation algorithms. In 29th Annual
Symposium on Foundations of Computer Science, pp 422-431, 1988.

[56] C. E. Leiserson. Area Efficient VLSI Computation. Foundations of Computing. MIT Press,
Cambridge, MA, 1983.

[57] C. E. Leiserson and J. G. Lewis. Orderings for parallel sparse symmetric factorization. in 3rd
SIAM Conference on Parallel Processing for Scientific Computing, 1987.

[58] G. Y. Li and T. F. Coleman, A parallel triangular solver for a distributed memory multiproces
SOR, SIAM J. Scient. Stat. Comput. 9 (1988), pp. 485–502.

[59] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM J. on
Numerical Analysis, 16:346–358, 1979.

[60] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J. of Appl.
Math., 36:177–189, April 1979.

[61] J. W. H. Liu. The solution of mesh equations on a parallel computer. in 2nd Langley
Conference on Scientific Computing, 1974.

[62] P.-F. Liu. The parallel implementation of N-body algorithms. PhD thesis, Yale University,
1994.

[63] R. Lohner, J. Camberos, and M. Merriam. Parallel unstructured grid generation. Computer
Methods in Applied Mechanics and Engineering 95 (1992) 343–357.

[64] J. Makino and M. Taiji, T. Ebisuzaki, and D. Sugimoto. Grape-4: a special-purpose computer
for gravitational N-body problems. In Parallel Processing for Scientific Computing, pages
355–360. SIAM, 1995.

[65] J. Matoušek. Approximations and optimal geometric divide-and-conquer. In 23rd ACM
Symp. Theory of Computing, pages 512–522. ACM, 1991.

[66] G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs. Journal
of Computer and System Sciences, 32(3):265–279, June 1986.

Bibliography 187

[67] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Automatic mesh partitioning.
In A. George, J. Gilbert, and J. Liu, editors, Sparse Matrix Computations: Graph Theory
Issues and Algorithms, IMA Volumes in Mathematics and its Applications. Springer-Verlag,
pp57–84, 1993.

[68] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Finite element meshes and geometric
separators. SIAM J. Scientific Computing, to appear, 1995.

[69] G. L. Miller, D. Talmor, S.-H. Teng, and N. Walkington. A Delaunay Based Numerical
Method for Three Dimensions: generation, formulation, partition. In the proceedings of the
twenty-sixth annual ACM symposium on the theory of computing, to appear, 1995.

[70] S. A. Mitchell and S. A. Vavasis. Quality mesh generation in three dimensions. Proc. 8th
ACM Symp. Comput. Geom. (1992) 212–221.

[71] K. Nabors and J. White. A multipole accelerated 3-D capacitance extraction program. IEEE
Trans. Comp. Des. 10 (1991) v11.

[72] D. P. O’Leary and G. W. Stewart, Data-flow algorithms for parallel matrix computations,
CACM, 28 (1985), pp. 840–853.

[73] L.S. Ostrouchov, M.T. Heath, and C.H. Romine, Modeling speedup in parallel sparse matrix
factorization, Tech Report ORNL/TM-11786, Mathematical Sciences Section, Oak Ridge
National Lab., December, 1990.

[74] V. Pan and J. Reif. Efficient parallel solution of linear systems. In Proceedings of the 17th
Annual ACM Symposium on Theory of Computing, pages 143–152, Providence, RI, May 1985.
ACM.

[75] A. Pothen, H. D. Simon, K.-P. Liou. Partitioning sparse matrices with eigenvectors of graphs.
SIAM J. Matrix Anal. Appl. 11 (3), pp 430–452, July, 1990.

[76] Vaughan Pratt, personal communication, June, 1995.

[77] V. Pratt, Anatomy of the Pentium Bug, TAPSOFT’95, LNCS 915, Springer-Verlag, Aarhus,
Denmark, (1995), 97–107. ftp://boole.stanford.edu/pub/FDIV/anapent.ps.gz.

[78] F. P. Preparata and M. I. Shamos. Computational Geometry An Introduction. Texts and
Monographs in Computer Science. Springer-Verlag, 1985.

[79] A. A. G. Requicha. Representations of rigid solids: theory, methods, and systems. In ACM
Computing Survey, 12, 437–464, 1980.

[80] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organiza-
tion in the brain. Psychological Review, 65:386–408, 1958.

[81] E. Rothberg and A. Gupta, The performance impact of data reuse in parallel dense Cholesky
factorization, Stanford Comp. Sci. Dept. Report STAN-CS-92-1401.

[82] E. Rothberg and A. Gupta, An efficient block-oriented approach to parallel sparse Cholesky
factorization, Supercomputing ’93, pp. 503-512, November, 1993.

[83] E. Rothberg and R. Schreiber, Improved load distribution in parallel sparse Cholesky factor-
ization, Supercomputing ’94, November, 1994.

188 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

[84] J. Ruppert. A new and simple algorithm for quality 2-dimensional mesh generation. Proc.
4th ACM-SIAM Symp. Discrete Algorithms (1993) 83–92.

[85] Y. Saad and M.H. Schultz, Data communication in parallel architectures, Parallel Comput.
11 (1989), pp. 131–150.

[86] J. K. Salmon. Parallel Hierarchical N-body Methods. PhD thesis, California Institute of
Technology, 1990. CRPR-90-14.

[87] J. K. Salmon, M. S. Warren, and G. S. Winckelmans. Fast parallel tree codes fro gravitational
and fluid dynamical N-body problems. Int. J. Supercomputer Applications, 8(2):129–142,
1994.

[88] H. Samet. The quadtree and related hierarchical data structures. ACM Computing Surveys,
pages 188–260, 1984.

[89] K. E. Schmidt and M. A. Lee. Implementing the fast multipole method in three dimensions.
J. Stat. Phy., page 63, 1991.

[90] H.P. Sharangpani and M.L. Barton, Statistical analysis of floating point flaw in the Pentium
TM Processor (1994). http://www.intel.com/product/pentium/white11.ps

[91] H. D. Simon. Partitioning of unstructured problems for parallel processing. Computing
Systems in Engineering 2:(2/3), pp135-148.

[92] H. D. Simon and S.-H. Teng. How good is recursive bisection? SIAM J. Scientific Computing,
to appear, 1995.

[93] J. P. Singh, C. Holt, T. Ttsuka, A. Gupta, and J. L. Hennessey. Load balancing and data
locality in hierarchical N-body methods. Technical Report CSL-TR-92-505, Stanford, 1992.

[94] G. W. Stewart. On the early history of the singular value decomposition. Technical Report
CS-TR-2855, 1992.

[95] G. Strang and G. J. Fix. An Analysis of the Finite Element Method. Prentice-Hall, Englewood
Cliffs, New Jersey, 1973.

[96] S.-H. Teng. Points, Spheres, and Separators: a unified geometric approach to graph parti-
tioning. PhD thesis, Carnegie-Mellon University, School of Computer Science, 1991. CMU-
CS-91-184.

[97] V. Vapnik. Estimation of dependencies based on empirical data [in Russian]. 1979.

[98] V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

[99] V. Vapnik. Statistical Learning Theory. Wiley, 1998.

[100] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. Theory Probab. Appl., 16: 264-280, 1971.

[101] R. D. Williams. Performance of dynamic load balancing algorithms for unstructured mesh
calculations. Concurrency, 3 (1991) 457

[102] F. Zhao. An O(n) algorithm for three-dimensional n-body simulation. Technical Report TR
AI Memo 995, MIT, AI Lab., October 1987.

Bibliography 189

[103] F. Zhao and S. L. Johnsson. The parallel multipole method on the Connection Machines.
SIAM J. Stat. Sci. Comp., 12:1420–1437, 1991.

