
Lecture 10

Partitioning and Load Balancing

Handling a large mesh or a linear system on a supercomputer or on a workstation cluster usually
requires that the data for the problem be somehow partitioned and distributed among the pro-
cessors. The quality of the partition affects the speed of solution: a good partition divides the
work up evenly and requires as little communication as possible. Unstructured meshes may ap-
proximate irregular physical problems with fewer mesh elements, their use increases the difficulty
of programming and requires new algorithms for partitioning and mapping data and computations
onto parallel machines. Partitioning is also important for VLSI circuit layout and parallel circuit
simulation.

10.1 Motivation from the Parallel Sparse Matrix Vector Multipli-

cation

Multiplying a sparse matrix by a vector is a basic step of most commonly used iterative methods
(conjugate gradient, for example). We want to find a way of efficiently parallelizing this operation.

Say that processor i holds the value of vi. To update this value, processor need to compute a
weighted sum of values at itself and all of its neighbors. This means it has to first receiving values
from processors holding values of its neighbors and then computing the sum. Viewing this in graph
terms, this corresponds to communicating with a node’s nearest neighbors.

We therefore need to break up the vector (and implicitly matrix and graph) so that:

• We balance the computational load at each processor. This is directly related to the number
of non-zero entries in its matrix block.

• We minimize the communication overhead. How many other values does a processor have to
receive? This equals the number of these values that are held at other processors.

We must come up with a proper division to reduce overhead. This corresponds to dividing
up the graph of the matrix among the processors so that there are very few crossing edges. First
assume that we have 2 processors, and we wish to partition the graph for parallel processing. As an
easy example, take a simplistic cut such as cutting the 2D regular grid of size n in half through the
middle. Let’s define the cut size as the number of edges whose endpoints are in different groups.
A good cut is one with a small cut size. In our example, the cut size would be

√
n. Assuming that

the cost of each communication is 10 times more than an local arithmetic operation. Then the
total parallel cost of perform matrix-vector product on the grid is (4n)/2 + 10

√
n = 2n + 10

√
n. In

general, for p processors, to need to partition the graph into p subgraphs.
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Various methods are used to break up a graph into parts such that the number of crossing edges
is minimized. Here we’ll examine the case where p = 2 processors, and we want to partition the
graph into 2 halves.

10.2 Separators

The following definitions will be of use in the discussion that follows. Let G = (V, E) be an
undirected graph.

• A bisection of G is a division of V into V1 and V2 such that |V1| = |V2|. (If |V | is odd,
then the cardinalities differ by at most 1). The cost of the bisection (V1, V2) is the number
of edges connecting V1 with V2.

• If β ∈ [1/2, 1), a β-bisection is a division of V such that V1,2 ≤ β|V |.

• An edge separator of G is a set of edges that if removed, would break G into 2 pieces with
no edges connecting them.

• A p-way partition is a division of V into p pieces V1,V2,. . .,Vp where the sizes of the various
pieces differ by at most 1. The cost of this partition is the total number of edges crossing the
pieces.

• A vertex separator is a set C of vertices that break G into 3 pieces A, B, and C where no
edges connect A and B. We also add the requirement that A and B should be of roughly
equal size.

Usually, we use edge partitioning for parallel sparse matrix-vector product and vertex parti-
tioning for the ordering in direct sparse factorization.

10.3 Spectral Partitioning – One way to slice a problem in half

The three steps to illustrate the solution of that problem are:

A. Electrical Networks (for motiving the Laplace matrix of a graph)

B. Laplacian of a Graph

C. Partitioning (that uses the spectral information)

10.3.1 Electrical Networks

As an example we choose a certain configuration of resistors (1 ohm), which are combined as shown
in fig. 10.1. A battery is connected to the nodes 3 and 4. It provides the voltage VB. To obtain
the current, we have to calculate the effective resistance of the configuration

I =
VB

eff. res.
. (10.1)

This so called Graph is by definition a collection of nodes and edges.
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Figure 10.1: Resistor network with nodes and edges

10.3.2 Laplacian of a Graph

Kirchoff’s Law tells us
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(10.2)

The matrix contains the information of how the resistors are connected, it is called the Laplacian
of the Graph

∇2
G = n × n matrix, G. . . graph

n. . . nodes
m. . . edges

(10.3)

(

∇2
G

)

ii
= degree of node i (10.4)

(

∇2
G

)

ij
=

{

0 if 6 ∃ edge between node i and node j
−1 if ∃ edge between node i and node j

(10.5)

Yet there is another way to obtain the Laplacian. First we have to set up the so called Node–edge
Incidence matrix, which is a m × n matrix and its elements are either 1, −1 or 0 depending on
whether the edge (row of the matrix) connects the node (column of matrix) or not. We find
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Figure 10.2: Partitioning of a telephone net as an example for a graph comparable in cost

nodes 1 2 3 4 5 6

MG =

edges
1
2
3
4
5
6
7
8

































1 −1
1 −1

1 −1
1 −1

1 −1
1 −1

1 −1
1 −1

































(10.6)

MT
G MG = ∇2

G (10.7)

10.3.3 Spectral Partitioning

Partitioning means that we would like to break the problem into 2 parts A and B, whereas the
number of connections between both parts are to be as small as possible (because they are the
most expensive ones), see fig. 10.2. Now we define a vector x ∈ Rn having the values xi = ±1.
+1 stands for belongs to part A, −1 means belongs to part B. With use of some vector calculus we
can show the following identity

n
∑

i=1

(MG x)2i = (MG x)T (MG x) = xT MT
G MG x = xT ∇2

G x (10.8)

xT ∇2
G x = 4 × (# edges between A and B).

In order to find the vector x with the least connections between part A and B, we want to solve
the minimization problem:

Min. xT ∇2
G x

xi = ±1
∑

xi = 0











≥



















Min. xT ∇2
G x

xi ∈ Rn
∑

x2
i = n

∑

xi = 0

(10.9)
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Figure 10.3: Tapir (Bern-Mitchell-Ruppert)

Finding an optimal ±1 solution is intractable (NP-hard) in general. In practice, we relax the
integer condition and allow the solution to be real. We do require the norm square of the solution,
like the integer case, equal to n (see RHS of eqn. (10.9)). The relaxation enlarges the solution
space, hence its optimal solution is no more than that of its integer counterpart. As an heuristic,
we solve the relaxed version of the problem and “round” the solution to give an ±1 solution.

The solution of the problem on the RHS of eqn. (10.9) gives us the second smallest eigenvalue
of the Laplacian ∇2

G and the corresponding eigenvector, which is in fact the vector x with the least
connections in the relaxation sense. To obtain a partition of the graph, we can divide its node set
according to the vector x. We can even control the ratio of the partition. For example to obtain
a bisection, i.e., a partition of each size, we can find the median of x and put those nodes whose
x values is smaller than the median on one side and the remaining on the other side. We can also
use the similar idea to divide the graph into two parts in which one is twice as big as the another.

Figure 10.3 shows a mesh together with its spectral partition. For those of you as ignorant as
your professors, a tapir is defined by Webster as any of several large inoffensive chiefly nocturnal
ungulates (family Tap iridae) of tropical America, Malaya, and Sumatra related to the horses and
rhinoceroses. The tapir mesh is generated by a Matlab program written by Scott Mitchell based
on a non-obtuse triangulation algorithm of Bern-Mitchell-Ruppert. The partition in the figure is
generated by John Gilbert’s spectral program in Matlab.

One has to notice that the above method is merely a heuristic. The algorithm does not come
with any performance guarantee. In the worst case, the partition may be far from the optimal,
partially due to the round-off effect and partially due the requirement of equal-sized partition.
In fact the partition for the tapir graph is not quite optimal. Nevertheless, the spectral method,
with the help of various improvements, works very well in practice. We will cover the partitioning
problem more systematically later in the semester.

The most commonly used algorithm for finding the second eigenvalue and its eigenvector is
the Lanczos algorithm though it makes far better sense to compute singular values rather than
eigenvalues. Lanczos is an iterative algorithm that can converge quite quickly.
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Figure 10.4: Its Spectral Partition
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Figure 10.5: The 2nd eigenfunction of MathWork’s logo

In general, we may need to divide a graph into more than one piece. The most commonly used
approach is to recursively apply the partitioner that divides the graph into two pieces of roughly
equal size. More systematic treatment of the partitioning problem will be covered in future lectures.

The success of the spectral method in practice has a physical interpretation. Suppose now we
have a continuous domain in place of a graph. The Laplacian of the domain is the continuous
counterpart of the Laplacian of a graph. The kth eigenfunction gives the kth mode of vibration
and the second eigenfunction induce a cut (break) of the domain along the weakest part of the
domain. (See figure10.5)

10.4 Geometric Methods

The spectral partitioning method only deals with the topology of the graph; the vertex locations
are not considered. For many practical problems, the graph is derived from a mesh. The geometric
method developed by Miller, Teng, Thurston, and Vavasis makes use of the vertex locations, and
is guaranteed to partition well-shaped 1 d-dimensional unstructured mesh with n vertices using a

1For example, no grid angles can be too small/too large.
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Finite Element Mesh

Figure 10.6: The input is a mesh with specified coordinates. Every triangle must be “well-shaped”,
which means that no angle can be too small. Remarks: The mesh is a subgraph of the intersection
graph of a set of disks, one centered at each mesh point. Because the triangles are well-shaped,
only a bounded number of disks can overlap any point, and the mesh is an “alpha-overlap graph”.
This implies that it has a good separator, which we proceed to find.

cut size O(n1−1/d), where the cut size is the number of elements in the vertex separator. Note that
this bound on the cut size is of the same order as for a regular grid of the same size. Such a bound
does not hold for spectral method in general.

The geometric partitioning method has a great deal of theory behind it, but the implementation
is relatively simple. For this reason, we will begin with an illustrative example before discussing
the method and theoretical background in more depth. To motivate the software development
aspect of this approach, we use the following figures (Figures 10.6 – 10.13) generated by a Matlab
implementation (written by Gilbert and Teng) to outline the steps for dividing a well-shaped mesh
into two pieces. The algorithm works on meshes in any dimension, but we’ll stick to two dimensions
for the purpose of visualization.

To recap, the geometric mesh partitioning algorithm can be summed up as follows (a more
precise algorithm follows):

• Perform a stereographic projection to map the points in a d-dimensional plane to the surface
of a d + 1 dimensional sphere

• (Approximately) compute the centerpoint of the points on the sphere

• Perform a conformal map to move the centerpoint to the center of the sphere

• Find a plane through the center of the sphere that approximately divides the nodes equally;
translate this plane to obtain a more even division

• Undo the conformal mapping and the stereographic mapping. This leaves a circle in the
plane.
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Figure 10.7: Let’s redraw the mesh, omitting the edges for clarity.
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Figure 10.8: First we project the points stereographically from the plane onto the surface of a
sphere (of one higher dimension than the mesh) tangent to the plane of the mesh. A stereographic
projection is done by drawing a line between a point A on the plane and the north pole of the
sphere, and mapping the point A to the intersection of the surface of the sphere and the line. Now
we compute a “centerpoint” for the projected points in 3-space. A centerpoint is defined such that
every plane through the centerpoint separates the input points into two roughly equal subsets.
(Actually it’s too expensive to compute a real centerpoint, so we use a fast, randomized heuristic
to find a pretty good approximation.
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Conformally Mapped Projected Points

Figure 10.9: Next, we conformally map the points so that the centerpoint maps to the center of
the sphere. This takes two steps: First we rotate the sphere about the origin (in 3-space) so that
the centerpoint is on the z axis, and then we scale the points in the plane to move the centerpoint
along the z axis to the origin (this can be thought of as mapping the sphere surface back to the
plane, stretching the plane, then re-mapping the plane back to the surface of the sphere). The
figures show the final result on the sphere and in the plane.

10.4.1 Geometric Graphs

This method applies to meshes in both two and three dimensions. It is based on the following
important observation: graphs from large-scale problems in scientific computing are often defined
geometrically. They are meshes of elements in a fixed dimension (typically two and three dimen-
sions), that are well shaped in some sense, such as having elements of bounded aspect ratio or
having elements with angles that are not too small. In other words, they are graphs embedded in
two or three dimensions that come with natural geometric coordinates and with structures.

We now consider the types of graphs we expect to run these algorithms on. We don’t expect to
get a truly random graph. In fact, Erdös, Graham, and Szemerédi proved in the 1960s that with
probability = 1, a random graph with cn edges does not have a two-way division with o(n) crossing
edges.

Structured graphs usually have divisions with
√

n crossing edges. The following classes of graphs
usually arise in applications such as finite element and finite difference methods (see Chapter ??):

• Regular Grids: These arise, for example, from finite difference methods.

• ‘Quad”-tree graphs and “Meshes”: These arise, for example, from finite difference meth-
ods and hierarchical N-body simulation.

• k-nearest neighbor graphs in d dimensions Consider a set P = {p1, p2, . . . , pn} of n
points in IRd. The vertex set for the graph is {1, 2, . . . , n} and the edge set is {(i, j) :
pj is one of the k-nearest neighbors of pi or vice-versa}. This is an important class of graphs
for image processing.
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Figure 10.10: Because the approximate centerpoint is now at the origin, any plane through the
origin should divide the points roughly evenly. Also, most planes only cut a small number of mesh
edges (O(

√

(n)), to be precise). Thus we find a separator by choosing a plane through the origin,
which induces a great circle on the sphere. In practice, several potential planes are considered, and
the best one accepted. Because we only estimated the location of the centerpoint, we must shift
the circle slightly (in the normal direction) to make the split exactly even. The second circle is the
shifted version.
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Figure 10.11: We now begin “undoing” the previous steps, to return to the plane. We first undo
the conformal mapping, giving a (non-great) circle on the original sphere ...
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Figure 10.12: ... and then undo the stereographic projection, giving a circle in the original plane.
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Figure 10.13: This partitions the mesh into two pieces with about n/2 points each, connected by
at most O(

√

(n)) edges. These connecting edges are called an ”edge separator”. This algorithm
can be used recursively if more divisions (ideally a power of 2) are desired.
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• Disk packing graphs: If a set of non-overlapping disks is laid out in a plane, we can tell
which disks touch. The nodes of a disk packing graph are the centers of the disks, and edges
connect two nodes if their respective disks touch.

• Planar graphs: These are graphs that can be drawn in a plane without crossing edges. Note
that disk packing graphs are planar, and in fact every planar graph is isomorphic to some
disk-packing graph (Andreev and Thurston).

10.4.2 Geometric Partitioning: Algorithm and Geometric Modeling

The main ingredient of the geometric approach is a novel geometrical characterization of graphs
embedded in a fixed dimension that have a small separator, which is a relatively small subset of
vertices whose removal divides the rest of the graph into two pieces of approximately equal size. By
taking advantage of the underlying geometric structure, partitioning can be performed efficiently.

Computational meshes are often composed of elements that are well-shaped in some sense, such
as having bounded aspect ratio or having angles that are not too small or too large. Miller et al.
define a class of so-called overlap graphs to model this kind of geometric constraint.

An overlap graph starts with a neighborhood system, which is a set of closed disks in d-
dimensional Euclidean space and a parameter k that restricts how deeply they can intersect.

Definition 10.4.1 A k-ply neighborhood system in d dimensions is a set {D1, . . . , Dn} of closed
disks in IRd, such that no point in IRd is strictly interior to more than k of the disks.

A neighborhood system and another parameter α define an overlap graph. There is a vertex for
each disk. For α = 1, an edge joins two vertices whose disks intersect. For α > 1, an edge joins two
vertices if expanding the smaller of their two disks by a factor of α would make them intersect.

Definition 10.4.2 Let α ≥ 1, and let {D1, . . . , Dn} be a k-ply neighborhood system. The (α, k)-
overlap graph for the neighborhood system is the graph with vertex set {1, . . . , n} and edge set

{(i, j)|(Di ∩ (α · Dj) 6= ∅) and ((α · Di) ∩ Dj 6= ∅)}.

We make an overlap graph into a mesh in d-space by locating each vertex at the center of its disk.

Overlap graphs are good models of computational meshes because every mesh of bounded-
aspect-ratio elements in two or three dimensions is contained in some overlap graph (for suitable
choices of the parameters α and k). Also, every planar graph is an overlap graph. Therefore, any
theorem about partitioning overlap graphs implies a theorem about partitioning meshes of bounded
aspect ratio and planar graphs.

We now describe the geometric partitioning algorithm.

We start with two preliminary concepts. We let Π denote the stereographic projection mapping
from IRd to Sd, where Sd is the unit d-sphere embedded in IRd+1. Geometrically, this map may
be defined as follows. Given x ∈ IRd, append ‘0’ as the final coordinate yielding x′ ∈ IRd+1. Then
compute the intersection of Sd with the line in IRd+1 passing through x′ and (0, 0, . . . , 0, 1)T . This
intersection point is Π(x).

Algebraically, the mapping is defined as

Π(x) =

(

2x/χ
1 − 2/χ

)
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where χ = xT x+1. It is also simple to write down a formula for the inverse of Π. Let u be a point
on Sd. Then

Π−1(u) =
ū

1 − ud+1

where ū denotes the first d entries of u and ud+1 is the last entry. The stereographic mapping,
besides being easy to compute, has a number of important properties proved below.

A second crucial concept for our algorithm is the notion of a center point. Given a finite subset
P ⊂ IRd such that |P | = n, a center point of P is defined to be a point x ∈ IRd such that if H is
any open halfspace whose boundary contains x, then

|P ∩ H| ≤ dn/(d + 1). (10.10)

It can be shown from Helly’s theorem [25] that a center point always exists. Note that center points
are quite different from centroids. For example, a center point (which, in the d = 1 case, is the
same as a median) is largely insensitive to “outliers” in P . On the hand, a single distant outliers
can cause the centroid of P to be displaced by an arbitrarily large distance.

Geometric Partitioning Algorithm

Let P = {p1, . . . , pn} be the input points in IRd that define the overlap graph.

1. Given p1, . . . , pn, compute P ′ = {Π(p1), . . . , Π(pn)} so that P ′ ⊂ Sd.

2. Compute a center point z of P ′.

3. Compute an orthogonal (d + 1) × (d + 1) matrix Q such that Qz = z′ where

z′ =













0
...
0
θ













such that θ is a scalar.

4. Define P ′′ = QP ′ (i.e., apply Q to each point in P ′). Note that P ′′ ⊂ Sd, and the center
point of P ′′ is z′.

5. Let D be the matrix [(1 − θ)/(1 + θ)]1/2I, where I is the d × d identity matrix. Let P ′′′ =
Π(DΠ−1(P ′′)). Below we show that the origin is a center point of P ′′′.

6. Choose a random great circle S0 on Sd.

7. Transform S0 back to a sphere S ⊂ IRd by reversing all the transformations above, i.e.,
S = Π−1(Q−1Π(D−1Π−1(S0))).

8. From S compute a set of vertices of G that split the graph as in Theorem ??. In particular,
define C to be vertices embedded “near” S, define A be vertices of G − C embedded outside
S, and define B to be vertices of G − C embedded inside S.

We can immediately make the following observation: because the origin is a center point of
P ′′′, and the points are split by choosing a plane through the origin, then we know that |A| ≤
(d + 1)n/(d + 2) and |B| ≤ (d + 1)n/(d + 2) regardless of the details of how C is chosen. (Notice
that the constant factor is (d + 1)/(d + 2) rather than d/(d + 1) because the point set P ′ lies in
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IRd+1 rather than IRd.) Thus, one of the claims made in Theorem ?? will follow as soon as we have
shown that the origin is indeed a center point of P ′′′ at the end of this section.

We now provide additional details about the steps of the algorithm, and also its complexity
analysis. We have already defined stereographic projection used Step 1. Step 1 requires O(nd)
operations.

Computing a true center point in Step 2 appears to a very expensive operation (involving a
linear programming problem with nd constraints) but by using random (geometric) sampling, an
approximate center point can be found in random constant time (independent of n but exponential
in d) [100, 48]. An approximate center point satisfies 10.10 except with (d + 1 + ε)n/(d + 2) on the
right-hand side, where ε > 0 may be arbitrarily small. Alternatively, a deterministic linear-time
sampling algorithm can be used in place of random sampling [65, 96], but one must again compute
a center of the sample using linear programming in time exponential in d [67, 41].

In Step 3, the necessary orthogonal matrix may be represented as a single Householder
reflection—see [43] for an explanation of how to pick an orthogonal matrix to zero out all but
one entry in a vector. The number of floating point operations involved is O(d) independent of n.

In Step 4 we do not actually need to compute P ′′; the set P ′′ is defined only for the purpose
of analysis. Thus, Step 4 does not involve computation. Note that the z ′ is the center point
of P ′′ after this transformation, because when a set of points is transformed by any orthogonal
transformation, a center point moves according to the same transformation (more generally, center
points are similarly moved under any affine transformation). This is proved below.

In Step 6 we choose a random great circle, which requires time O(d). This is equivalent to
choosing plane through the origin with a randomly selected orientation. (This step of the algorithm
can be made deterministic; see [?].) Step 7 is also seen to require time O(d).

Finally, there are two possible alternatives for carrying out Step 8. One alternative is that we
are provided with the neighborhood system of the points (i.e., a list of n balls in IRd) as part of the
input. In this case Step 8 requires O(nd) operations, and the test to determine which points belong
in A, B or C is a simple geometric test involving S. Another possibility is that we are provided
with the nodes of the graph and a list of edges. In this case we determine which nodes belong in
A, B, or C based on scanning the adjacency list of each node, which requires time linear in the size
of the graph.

Theorem 10.4.1 If M is an unstructured mesh with bounded aspect ratio, then the graph of M is
a subgraph of a bounded overlap graph of the neighborhood system where we have one ball for each
vertex of M of radius equal to half of the distance to its nearest vertices. Clearly, this neighborhood
system has ply equal to 1.

Theorem 10.4.1 (Geometric Separators [67]) Let G be an n-vertex (α, k)-overlap graph in d
dimensions. Then the vertices of G can be partitioned into three sets A, B, and C, such that

• no edge joins A and B,

• A and B each have at most (d + 1)/(d + 2) vertices,

• C has only O(αk1/dn(d−1)/d) vertices.

Such a partitioning can be computed by the geometric-partitioning-algorithm in randomized
linear time sequentially, and in O(n/p) parallel time when we use a parallel machine of p processors.
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10.4.3 Other Graphs with small separators

The following classes of graphs all have small separators:

• Lines have edge-separators of size 1. Removing the middle edge is enough.

• Trees have a 1-vertex separator with β = 2/3 - the so-called centroid of the tree.

• Planar Graphs. A result of Lipton and Tarjan shows that a planar graph of bounded degree
has a

√
8n vertex separator with β = 2/3.

• d dimensional regular grids (those are used for basic finite difference method). As a folklore,
they have a separator of size n1−1/d with beta β = 1/2.

10.4.4 Other Geometric Methods

Recursive coordinate bisection

The simplest form of geometric partitioning is recursive coordinate bisection (RCB) [91, 101]. In
the RCB algorithm, the vertices of the graph are projected onto one of the coordinate axes, and
the vertex set is partitioned around a hyperplane through the median of the projected coordinates.
Each resulting subgraph is then partitioned along a different coordinate axis until the desired
number of subgraphs is obtained.

Because of the simplicity of the algorithm, RCB is very quick and cheap, but the quality of the
resultant separators can vary dramatically, depending on the embedding of the graph in IRd. For
example, consider a graph that is “+”-shaped. Clearly, the best (smallest) separator consists of
the vertices lying along a diagonal cut through the center of the graph. RCB, however, will find
the largest possible separators, in this case, planar cuts through the centers of the horizontal and
vertical components of the graph.

Inertia-based slicing

Williams [101] noted that RCB had poor worst case performance, and suggested that it could
be improved by slicing orthogonal to the principal axes of inertia, rather than orthogonal to the
coordinate axes. Farhat and Lesoinne implemented and evaluated this heuristic for partitioning
[33].

In three dimensions, let v = (vx, vy, vz)
t be the coordinates of vertex v in IR3. Then the inertia

matrix I of the vertices of a graph with respect to the origin is given by

I =







Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz







where,

Ixx =
∑

v∈V

v2
y + v2

z , Iyy =
∑

v∈V

v2
x + v2

z , Izz =
∑

v∈V

v2
x + v2

y

and, for i, j ∈ {x, y, z}, i 6= j,

Iij = Iji = −
∑

v∈V

vivj



16 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

The eigenvectors of the inertia matrix are the principal axes of the vertex distribution. The
eigenvalues of the inertia matrix are the principal moments of inertia. Together, the principal axes
and principal moments of inertia define the inertia ellipse; the axes of the ellipse are the principal
axes of inertia, and the axis lengths are the square roots of the corresponding principal moments.
Physically, the size of the principal moments reflect how the mass of the system is distributed with
respect to the corresponding axis - the larger the principal moment, the more mass is concentrated
at a distance from the axis.

Let I1, I2, and I3 denote the principal axes of inertia corresponding to the principal moments
α1 ≤ α2 ≤ α3. Farhat and Lesoinne projected the vertex coordinates onto I1, the axis about
which the mass of the system is most tightly clustered, and partitioned using a planar cut through
the median. This method typically yielded a good initial separator, but did not perform as well
recursively on their test mesh - a regularly structured “T”-shape.

Farhat and Lesoinne did not present any results on the theoretical properties of the inertia
slicing method. In fact, there are pathological cases in which the inertia method can be shown to
yield a very poor separator. Consider, for example, a “+”-shape in which the horizontal bar is
very wide and sparse, while the vertical bar is relatively narrow but dense. I1 will be parallel to
the horizontal axis, but a cut perpendicular to this axis through the median will yield a very large
separator. A diagonal cut will yield the smallest separator, but will not be generated with this
method.

Gremban, Miller, and Teng show how to use moment of inertia to improve the geometric par-
titioning algorithm.

10.4.5 Partitioning Software

• Chaco written by Bruce Hendrickson and Rob Leland. To get code send email to ba-
hendr@cs.sandia.gov (Bruce Hendrickson).

• Matlab Mesh Partitioning Toolbox: written by Gilbert and Teng. It includes both edge and
vertex separators, recursive bipartition, nested dissection ordering, visualizations and demos,
and some sample meshes. The complete toolbox is available by anonymous ftp from machine
ftp.parc.xerox.com as file /pub/gilbert/meshpart.uu.

• Spectral code: Pothen, Simon, and Liou.

10.5 Load-Balancing N-body Simulation for Non-uniform Parti-

cles

The discussion of Chapter ?? was focused on particles that are more or less uniformly distributed.
However, in practical simulations, particles are usually not uniformly distributed. Particles may
be highly clustered in some regions and relatively scattered in some other regions. Thus, the
hierarchical tree is adaptively generated, with smaller box for regions of clustered particles. The
computation and communication pattern of a hierarchical method becomes more complex and often
is not known explicitly in advance.

10.5.1 Hierarchical Methods of Non-uniformly Distributed Particles

In this chapter, we use the following notion of non-uniformity: We say a point set P = {p1, ..., pn}
in d dimensions is µ-non-uniform if the hierarchical tree generated for P has height log2d(n/m)+µ.
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In other words, the ratio of the size of smallest leaf-box to the root-box is 1/2log
2d (n/m)+µ. In

practice, µ is less than 100.

The Barnes-Hut algorithm, as an algorithm, can be easily generalized to the non-uniform case.
We describe a version of FMM for non-uniformly distributed particles. The method uses the box-
box interaction. FMM tries to maximize the number of FLIPs among large boxes and also tries to
FLIP between roughly equal sized boxes, a philosophy which can be described as: let parents do as
much work as possible and then do the left-over work as much as possible before passing to the next
generation. Let c1, ..., c2d be the set of child-boxes of the root-box of the hierarchical tree. FMM
generates the set of all interaction-pairs of boxes by taking the union of Interaction-pair(ci, cj) for
all 1 ≤ i < j ≤ 2d, using the Interaction-Pair procedure defined below.

Procedure Interaction-Pair (b1, b2)

• If b1 and b2 are β-well-separated, then (b1, b2) is an interaction-pair.

• Else, if both b1 and b2 are leaf-boxes, then particles in b1 and b2 are near-field particles.

• Else, if both b1 and b2 are not leaf-boxes, without loss of generality, assuming that b2 is at
least as large as b1 and letting c1, ..., c2d be the child-boxes of b2, then recursively decide
interaction pair by calling: Interaction-Pair(b1,ci) for all 1 ≤ i ≤ 2d.

• Else, if one of b1 and b2 is a leaf-box, without loss of generality, assuming that b1 is a leaf-box
and letting c1, ..., c2d be the child-boxes of b2, then recursively decide interaction pairs by
calling: Interaction-Pair(b1,ci) for all 1 ≤ i ≤ 2d.

FMM for far-field calculation can then be defined as: for each interaction pair (b1, b2), letting
Φp

i () (i = 1, 2) be the multipole-expansion of bi, flip Φp
1() to b2 and add to b2’s potential Taylor-

expansion. Similarly, flip Φp
2() to b1 and add to b1’s potential Taylor-expansion. Then traverse

down the hierarchical tree in a preordering, shift and add the potential Taylor-expansion of the
parent box of a box to its own Taylor-expansion.

Note that FMM for uniformly distributed particles has a more direct description (see Chapter
??).

10.5.2 The Communication Graph for N-Body Simulations

In order to efficiently implement an N-body method on a parallel machine, we need to understand
its communication pattern, which can be described by a graph that characterizes the pattern of
information exchange during the execution of the method. The communication graph is defined on
basic computational elements of the method. The basic elements of hierarchical N-body methods
are boxes and points, where points give the locations of particles and boxes are generated by
the hierarchical method. Formally, the communication graph is an edge-weighted directed graph,
where the edges describe the pattern of communication and the weight on an edge specifies the
communication requirement along the edge.

A Refined FMM for Non-Uniform Distributions

For parallel implementation, it is desirable to have a communication graph that uses small edge-
weights and has small in- and out-degrees. However, some boxes in the set of interaction-pairs
defined in the last section may have large degree!

FMM described in the last subsection has a drawback which can be illustrated by the following
2D example. Suppose the root-box is divided into four child-boxes A, B, C, and D. Assume further
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A B

C D

Figure 10.14: A non-uniform example

that boxes A, B and C contains less than m (< 100) particles, and most particles, say n of them,
are uniformly distributed in D, see Figure 10.14. In FMM, we further recursively divide D by
log4(n/m) levels. Notice that A, B, and C are not well-separated from any box in D. Hence the
FMM described in the previous subsection will declare all particles of D as near-field particles of
A, B, and C (and vice versa). The drawback is two-folds: (1) From the computation viewpoint, we
cannot take advantage of the hierarchical tree of D to evaluate potentials in A, B, and C. (2) From
the communication viewpoint, boxes A, B, and C have a large in-degree in the sense that each
particle in these boxes need to receive information from all n particles in D, making partitioning
and load balancing harder. Notice that in BH most boxes of D are well-separated from particles in
A, B, and C. Hence the well-separation condition is different in BH: because BH uses the particle-
box interaction, the well-separation condition is measured with respect to the size of the boxes in
D. Thus most boxes are well-separated from particles in A, B, and C. In contrast, because FMM
applies the FLIP operation, the well-separation condition must measure up against the size of the
larger box. Hence no box in D is well-separated from A, B, and C.

Our refined FMM circumvents this problem by incorporating the well-separation condition of
BH into the Interaction-Pair procedure: if b1 and b2 are not well-separated, and b1, the larger of
the two, is a leaf-box, then we use a well-separation condition with respect to b2, instead of to b1,
and apply the FLIP operation directly onto particles in the leaf-box b1 rather than b1 itself.

We will define this new well-separation condition shortly. First, we make the following ob-
servation about the Interaction-Pair procedure defined in the last subsection. We can prove, by
a simple induction, the following fact: if b1 and b2 are an interaction-pair and both b1 and b2

are not leaf-boxes, then 1/2 ≤ size(b1)/size(b2) ≤ 2. This is precisely the condition that FMM
would like to maintain. For uniformly distributed particles, such condition is always true between
any interaction-pair (even if one of them is a leaf-box). However, for non-uniformly distributed
particles, if b1, the larger box, is a leaf-box, then b1 could be much larger than b2.

The new β-well-separation condition, when b1 is a leaf-box, is then defined as: b1 and b2 are
β-well-separated if b2 is well-separated from all particles of b1 (as in BH). Notice, however, with the
new condition, we can no longer FLIP the multipole expansion of b1 to a Taylor-expansion for b2.
Because b1 has only a constant number of particles, we can directly evaluate the potential induced
by these particles for b2. This new condition makes the FLIP operation of this special class of
interaction-pairs uni-directional: We only FLIP b2 to b1.

We can describe the refined Interaction-Pair procedure using modified well-separation condition
when one box is a leaf-box.

Procedure Refined Interaction-Pair (b1, b2)

• If b1 and b2 are β-well-separated and 1/2 ≤ size(b1)/size(b2) ≤ 2, then (b1, b2) is a bi-
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directional interaction-pair.

• Else, if the larger box, without loss of generality, b1, is a leaf-box, then the well-separation
condition becomes: b2 is well-separated from all particles of b1. If this condition is true, then
(b1, b2) is a uni-directional interaction-pair from b2 to b1.

• Else, if both b1 and b2 are leaf-boxes, then particles in b1 and b2 are near-field particles.

• Else, if both b1 and b2 are not leaf-boxes, without loss of generality, assuming that b2 is at
least as large as b1 and letting c1, ..., c2d be the child-boxes of b2, then recursively decide
interaction-pairs by calling: Interaction-Pair(b1,ci) for all 1 ≤ i ≤ 2d.

• Else, if one of b1 and b2 is a leaf-box, without loss of generality, assuming that b1 is a leaf
box and letting c1, ..., c2d be the child-boxes of b2, then recursively decide interaction pairs
by calling: Interaction-Pair(b1,ci) for all 1 ≤ i ≤ 2d.

Let c1, ..., c2d be the set of child-boxes of the root-box of the hierarchical tree. Then the
set of all interaction-pair can be generated as the union of Refined-Interaction-Pair(ci, cj) for all
1 ≤ i < j ≤ 2d.

The refined FMM for far-field calculation can then be defined as: for each bi-directional inter-
action pair (b1, b2), letting Φp

i () (i = 1, 2) be the multipole expansion of bi, flip Φp
1() to b2 and

add to b2’s potential Taylor-expansion. Similarly, flip Φp
2() to b1 and add to b1’s potential Taylor-

expansion. Then traverse down the hierarchical tree in a preordering, shift and add the potential
Taylor-expansion of the parent box of a box to its own Taylor-expansion. For each uni-directional
interaction pair (b1, b2) from b2 to b1, letting Φp

2() be the multipole-expansion of b2, evaluate Φp
2()

directly for each particle in b2 and add its potential.

Hierarchical Neighboring Graphs

Hierarchical methods (BH and FMM) explicitly use two graphs: the hierarchical tree which connects
each box to its parent box and each particle to its leaf-box, and the near-field graph which connects
each box with its near-field boxes. The hierarchical tree is generated and used in the first step
to compute the multipole expansion induced by each box. We can use a bottom-up procedure to
compute these multipole expansions: First compute the multipole expansions at leaf-boxes and
then SHIFT the expansion to the parent boxes and then up the hierarchical tree until multipole-
expansions for all boxes in the hierarchical tree are computed.

The near-field graph can also be generated by the Refined-Interaction-Pair procedure. In Section
10.5.3, we will formally define the near-field graph.

Fast-Multipole Graphs (FM)

The Fast-Multipole graph, FMβ , models the communication pattern of the refined FMM. It is a
graph defined on the set of boxes and particles in the hierarchical tree. Two boxes b1 and b2 are
connected in FMβ iff (1) b1 is the parent box of b2, or vice versa, in the hierarchical tree; or (2)
(b1, b2) is an interaction-pair generated by Refined-Interaction-Pair defined in Section 10.5.2. The
edge is bi-directional for a bi-directional interaction-pair and uni-directional for a uni-directional
interaction-pair. Furthermore, each particle is connected with the box that contains the particle.

The following Lemma that will be useful in the next section.
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Lemma 10.5.1 The refined FMM flips the multipole expansion of b2 to b1 if and only if (1) b2

is well-separated from b1 and (2) neither the parent of b2 is well-separated from b1 nor b2 is well-
separated from the parent of b1.

It can be shown that both in- and out-degrees of FMβ are small.

Barnes-Hut Graphs (BH)

BH defines two classes of communication graphs: BHβ
S and BHβ

P . BHβ
S models the sequential

communication pattern and BHβ
P is more suitable for parallel implementation. The letters S and

P , in BHβ
S and BHβ

P , respectively, stand for “Sequential” and “Parallel”.

We first define BHβ
S and show why parallel computing requires a different communication graph

BHβ
P to reduce total communication cost.

The graph BHβ
S of a set of particles P contains two sets of vertices: P, the particles, and B, the

set of boxes in the hierarchical tree. The edge set of the graph BHβ
S is defined by the communication

pattern of the sequential BH. A particle p is connected with a box b if in BH, we need to evaluate
p against b to compute the force or potential exerted on p. So the edge is directed from b to p.
Notice that if p is connected with b, then b must be well-separated from p. Moreover, the parent of
b is not well-separated from p. Therefore, if p is connected with b in BHβ

S , then p is not connected
to any box in the subtree of b nor to any ancestor of b.

In addition, each box is connected directly with its parent box in the hierarchical tree and each
point p is connected its leaf-box. Both types of edges are bi-directional.

Lemma 10.5.2 Each particle is connected to at most O(log n + µ) number of boxes. So the in-

degree of BHβ
S is bounded by O(log n + µ).

Notice, however, BHβ
S is not suitable for parallel implementation. It has a large out-degree.

This major drawback can be illustrated by the example of n uniformly distributed particles in two
dimensions. Assume we have four processors. Then the “best” way to partition the problem is to
divide the root-box into four boxes and map each box onto a processor. Notice that in the direct
parallel implementation of BH, as modeled by BHβ

S , each particle needs to access the information
of at least one boxes in each of the other processors. Because each processor has n/4 particles, the
total communication overhead is Ω(n), which is very expensive.

The main problem with BHβ
S is that many particles from a processor need to access the in-

formation of the same box in some other processors (which contributes to the large out-degree).
We show that a combination technique can be used to reduce the out-degree. The idea is to com-
bine the “same” information from a box and send the information as one unit to another box on
a processor that needs the information. We will show that this combination technique reduces
the total communication cost to O(

√
n log n) for the four processor example, and to O(

√
pn log n)

for p processors. Similarly, in three dimensions, the combination technique reduces the volume of
messages from Ω(n log n) to O(p1/3n2/3(log n)1/3).

We can define a graph BHβ
P to model the communication and computation pattern that uses

this combination technique. Our definition of BHβ
P is inspired by the communication pattern of

the refined FMM. It can be shown that the communication pattern of the refined FMM can be
used to guide the message combination for the parallel implementation of the Barnes-Hut method!

The combination technique is based on the following observation: Suppose p is well-separated
from b1 but not from the parent of b1. Let b be the largest box that contains p such that b is
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well-separated from b1, using the well-separation definition in Section 10.5.2. If b is not a leaf-box,
then (b, b1) is a bi-directional interaction-pair in the refined FMM. If b is a leaf-box, then (b, b1) is
a uni-directional interaction-pair from b1 to b. Hence (b, b1) is an edge of FMβ . Then, any other
particle q contained in b is well-separated from b1 as well. Hence we can combine the information
from b1 to p and q and all other particles in b as follows: b1 sends its information (just one copy) to
b and b forwards the information down the hierarchical tree, to both p and q and all other particles
in b. This combination-based-communication scheme defines a new communication graph BHβ

P for
parallel BH: The nodes of the graph are the union of particles and boxes, i.e., P ∪ B(P ). Each
particle is connected to the leaf-box it belongs to. Two boxes are connected iff they are connected
in the Fast-Multipole graph. However, to model the communication cost, we must introduce a
weight on each edge along the hierarchical tree embedded in BHβ

P , to be equal to the number of
data units needed to be sent along that edge.

Lemma 10.5.3 The weight on each edge in BHβ
P is at most O(log n + µ).

It is worthwhile to point out the difference between the comparison and communication patterns
in BH. In the sequential version of BH, if p is connected with b, then we have to compare p

against all ancestors of b in the computation. The procedure is to first compare p with the root
of the hierarchical tree, and then recursively move the comparison down the tree: if the current
box compared is not well-separated from p, then we will compare p against all its child-boxes.
However, in terms of force and potential calculation, we only evaluate a particle against the first
box down a path that is well-separated from the particle. The graphs BHβ

S and BHβ
P capture the

communication pattern, rather than the comparison pattern. The communication is more essential
to force or potential calculation. The construction of the communication graph has been one of the
bottlenecks in load balancing BH and FMM on a parallel machine.

10.5.3 Near-Field Graphs

The near-field graph is defined over all leaf-boxes. A leaf-box b1 is a near-field neighbor of a leaf-box
b if b1 is not well-separated from some particles of b. Thus, FMM and BH directly compute the
potential at particles in b induced by particles of b1.

There are two basic cases: (1) if size(b1) ≤ size(b), then we call b1 a geometric near-field
neighbor of b. (2) if size(b1) > size(b), then we call b1 a hierarchical near-field neighbor of b. In
the example of Section 10.5.2, A, B, C are hierarchical near-field neighbors of all leaf-boxes in D;
while A, B, and C have some geometric near-field neighbors in D.

We introduce some notations. The geometric in-degree of a box b is the number of its geometric
near-field neighbors. The geometric out-degree of a box b is the number of boxes to which b is the
geometric near-field neighbors. The hierarchical in-degree of a box b is the number of its hierarchical
near-field neighbors. We will define the hierarchical out-degree of a box shortly.

It can be shown that the geometric in-degree, geometric out-degree, and hierarchical in-degree
are small. However, in the example of Section 10.5.2, A, B, and C are hierarchical near-field
neighbors for all leaf-boxes in D. Hence the number of leaf-boxes to which a box is a hierarchical
near-field neighbor could be very large. So the near-field graph defined above can have a very large
out-degree.

We can use the combination technique to reduce the degree when a box b is a hierarchical
near-field neighbor of a box b1. Let b2 be the ancestor of b1 of the same size as b. Instead of b

sending its information directly to b1, b sends it to b2 and b2 then forwards the information down
the hierarchical tree. Notice that b and b2 are not well-separated. We will refer to this modified
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near-field graph as the near-field graph, denoted by NF β . We also define the hierarchical out-degree
of a box b to be the number of edges from b to the set of non-leaf-boxes constructed above. We
can show that the hierarchical out-degree is also small.

To model the near-field communication, similar to our approach for BH, we introduce a weight
on the edges of the hierarchical tree.

Lemma 10.5.4 The weight on each edge in NF β is at most O(log n + µ).

10.5.4 N-body Communication Graphs

By abusing notations, let FMβ = FMβ ∪ NF β and BHβ
P = BHβ

P ∪ NF β . So the communica-
tion graph we defined simultaneously supports near-field and far-field communication, as well as
communication up and down the hierarchical tree. Hence by partitioning and load balancing FM β

and BHβ
P , we automatically partition and balance the hierarchical tree, the near-field graph, and

the far-field graph.

10.5.5 Geometric Modeling of N-body Graphs

Similar to well-shaped meshes, there is a geometric characterization of N-body communication
graphs. Instead of using neighborhood systems, we use box-systems. A box-system in IRd is a set
B = {B1, . . . , Bn} of boxes. Let P = {p1, . . . , pn} be the centers of the boxes, respectively. For
each integer k, the set B is a k-ply box-system if no point p ∈ IRd is contained in more than k of
int(B1), . . . , int(Bn).

For example, the set of all leaf-boxes of a hierarchical tree forms a 1-ply box-system. The
box-system is a variant of neighborhood system of Miller, Teng, Thurston, and Vavasis [67], where
a neighborhood system is a collection of Euclidean balls in IRd. We can show that box-systems can
be used to model the communication graphs for parallel adaptive N-body simulation.

Given a box-system, it is possible to define the overlap graph associated with the system:

Definition 10.5.1 Let α ≥ 1 be given, and let {B1, . . . , Bn} be a k-ply box-system. The α-overlap
graph for this box-system is the undirected graph with vertices V = {1, . . . , n} and edges

E = {(i, j) : Bi ∩ (α · Bj) 6= ∅ and (α · Bi) ∩ Bj 6= ∅}.

The edge condition is equivalent to: (i, j) ∈ E iff the α dilation of the smaller box touches the
larger box.

As shown in [96], the partitioning algorithm and theorem of Miller et al can be extended to
overlap graphs on box-systems.

Theorem 10.5.1 Let G be an α-overlap graph over a k-ply box-system in IRd, then G can be
partitioned into two equal sized subgraphs by removing at most O(αk1/dn1−1/d) vertices. Moreover,
such a partitioning can be computed in linear time sequentially and in parallel O(n/p) time with p
processors.

The key observation is the following theorem.

Theorem 10.5.2 Let P = {p1, . . . , pn} be a point set in IRd that is µ-non-uniform. Then the set

of boxes B(P ) of hierarchical tree of P is a (log2d n+µ)-ply box-system and FMβ(P ) and BHβ
P (P )

are subgraphs of the 3β-overlap graph of B(P ).
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Therefore,

Theorem 10.5.3 Let G be an N-body communication graph (either for BH or FMM) of a set of
particles located at P = {p1, ..., pn} in IRd (d = 2 or 3). If P is µ-non-uniform, then G can
be partitioned into two equal sized subgraphs by removing at most O(n1−1/d(log n + µ)1/d) nodes.
Moreover, such a partitioning can be computed in linear time sequentially and in parallel O(n/p)
time with p processors.


