
Lecture 9

Particle Methods

9.1 Reduce and Broadcast: A function viewpoint

[This section is being rewritten with what we hope will be the world’s clearest explanation of the
fast multipole algorithm. Readers are welcome to take a quick look at this section, or pass to the
next section which leads up to the multipole algorithm through the particle method viewpoint]

Imagine we have P processors, and P functions f1(z), f2(z), . . . , fP (z), one per processor. Our
goal is for every processor to know the sum of the functions f(z) = f1(z) + . . . + fP (z). Really this
is no different from the reduce and broadcast situation given in the introduction.

As a practical question, how can functions be represented on the computer? Probably we should
think of Taylor series or multipole expansion. If all the Taylor series or multipole expansions are
centered at the same point, then the function reduction is easy. Simply reduce the corresponding
coefficients. If the pairwise sum consists of functions represented using different centers, then a
common center must be found and the functions must be transformed to that center before a
common sum may be found.

Example: Reducing Polynomials Imagine that processor i contains the polynomial
fi(z) = (z− i)3. The coefficients may be expanded out as fi(z) = a0 +a1z+a2z

2 +a3z
3.

Each processor i contains a vector (a0, a1, a2, a3). The sum of the vectors may be
obtained by a usual reduce algorithm on vectors.

An alternative that may seem like too much trouble at first is that every time we
make a pairwise sum we shift to a common midpoint (see Figure 9.1).

There is another complication that occurs when we form pairwise sums of functions. If the
expansions are multipole or Taylor expansions, we may shift to a new center that is outside the
region of convergence. The coefficients may then be meaningless. Numerically, even if we shift
towards the boundary of a region of convergence, we may well lose accuracy, especially since most
computations choose to fix the number of terms in the expansion to keep.

Difficulties with shifting multipole or Taylor Expansions

The fast multipole algorithm accounts for these difficulties in a fairly simple manner. Instead
of computing the sum of the functions all the way up the tree and then broadcasting back, it saves
the intermediate partial sums summing them in only when appropriate. The figure below indicates
when this is appropriate.

1

2 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

()a , a , a , a� � � �

f (z)� f (z)�

()a , a , a , a� � � 	

Figure 9.1: Pairwise Sum

9.2 Particle Methods: An Application

Imagine we want to model the basic mechanics of our solar system. We would probably start with
the sun, somehow representing its mass, velocity, and position. We might then add each of the nine
planets in turn, recording their own masses, velocities, and positions at a point in time. Let’s say
we add in a couple of hundred of the larger asteroids, and a few of our favorite comets. Now we set
the system in motion. Perhaps we would like to know where Pluto will be in a hundred years, or
whether a comet will hit us soon. To solve Newton’s equations directly with more than even two
bodies is intractably difficult. Instead we decide to model the system using discrete time intervals,
and computing at each time interval the force that each body exerts on each other, and changing
the velocities of the bodies accordingly. This is an example of an N-body problem. To solve the
problem in a simple way requires O(n2) time for each time step. With some considerable effort, we
can reduce this to O(n) (using the fast multipole algorithm to be described below). A relatively
simple algorithm the Barnes-Hut Algorithm, (to be described below) can compute movement in
O(n log(n)) time.

9.3 Outline

• Formulation and applications

• “The easiest part”: the Euler method to move bodies.

• Direct methods for force computation.

• Hierarchical methods (Barnes-Hut, Appel, Greengard and Rohklin)

9.4 What is N-Body Simulation?

We take n bodies (or particles) with state describing the initial position ~x1, ~x2, . . . , ~xn ∈ <k and
initial velocities ~v1, ~v2, . . . , ~vn ∈ <k.

We want to simulate the evolution of such a system, i.e., to compute the trajectories of each
body, under an interactive force: the force exerted on each body by the whole system at a given

Preface 3

Update configuration

Compute Force of Interaction

Collect statistical information

Figure 9.2: Basic Algorithm of N-body Simulation

point. For different applications we will have different interaction forces, such as gravitational or
Coulombic forces. We could even use these methods to model spring systems, although the advanced
methods, which assume forces decreasing with distance, do not work under these conditions.

9.5 Examples

• Astrophysics: The bodies are stars or galaxies, depending on the scale of the simulation.
The interactive force is gravity.

• Plasma Physics: The basic particles are ions, electrons, etc; the force is Coulombic.

• Molecular Dynamics: Particles are atoms or clusters of atoms; the force is electrostatic.

• Fluid Dynamics: Vortex method where particle are fluid elements (fluid blobs).

Typically, we call this class of simulation methods, the particle methods. In such simulations,
it is important that we choose both spatial and temporal scales carefully, in order to minimize
running time and maximize accuracy. If we choose a time scale too large, we can lose accuracy
in the simulation, and if we choose one too small, the simulations will take too long to run. A
simulation of the planets of the solar system will need a much larger timescale than a model of
charged ions. Similarly, spatial scale should be chosen to minimize running time and maximize
accuracy. For example, in applications in fluid dynamics, molecular level simulations are simply
too slow to get useful results in a reasonable period of time. Therefore, researchers use the vortex
method where bodies represent large aggregates of smaller particles. Hockney and Eastwood’s
book Computer Simulations Using Particles,, McGraw Hill (1981), explores the applications
of particle methods applications, although it is somewhat out of date.

9.6 The Basic Algorithm

Figure 9.2 illustrates the key steps in n-body simulation. The step of collecting statistical infor-
mation is application dependent, and some of the information gathered at this step may be used
during the next time interval.

4 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

We will use gravitational forces as an example to present N-body simulation algorithms. Assume
there are n bodies with masses m1, m2, . . . , mn, respectively, initially located at ~x1, ..., ~xn ∈ <3 with
velocity ~v1, ..., ~vn. The gravitational force exert on the ith body by the jth body is given by

~Fij = G
mimj

r2
= G

mimj

| ~xj − ~xi|3
(~xj − ~xi),

where G is the gravitational constant. Thus the total force on the ith body is the vector sum
of all these forces and is give by,

~Fi =
∑

j 6=i

~Fij .

Let ~ai = d~vi/dt be the acceleration of the body i, where where ~vi = d~xi/dt. By Newton’s second
law of motion, we have ~Fi = mi~ai = mid~vi/dt.

In practice, we often find that using a potential function V = φm will reduce the labor of
the calculation. First, we need to compute the potential due to the N-body system position, i.e.
x1, . . . , xn, at positions y1, . . . , yn.

The total potential is calculated as

Vi =
n
∑

i,j=1;i6=j

φ(xi − yj)mj 1 ≤ i, j ≤ n,

where φ is the potential due to gravity. This can also be written in the matrix form:

V =

0 . . . (xi − yj)
.

φ(xj − yi) . . . 0

In <3,

φ(x) =
1

‖ x ‖
.
In <2,

φ(x) = log‖ x ‖

.

The update of particle velocities and positions are in three steps:

1. F = π · m;

2. Vnew = Vold + ∆t · F
m

;

3. xnew = xold + ∆t · Vnew.

The first step is the most expensive part in terms of computational time.

Preface 5

9.6.1 Finite Difference and the Euler Method

In general, the force calculation is the most expensive step for N-body simulations. We will present
several algorithms for this later on, but first assume we have already calculated the force ~Fi act-
ing one each body. We can use a numerical method (such as the Euler method) to update the
configuration.

To simulate the evolution of an N -body system, we decompose the time interval into discretized
time steps: t0, t1, t2, t3, For uniform discretizations, we choose a ∆t and let t0 = 0 and tk = k∆t.
The Euler method approximates the derivative by finite difference.

~ai(tk) = ~Fi/mi =
~vi(tk) − ~vi(tk − ∆t)

∆t

~vi(tk) =
~xi(tk + ∆t) − ~xi(tk)

∆t
,

where 1 ≤ i ≤ n. Therefore,

~vi(tk) = ~vi(tk−1) + ∆t(~Fi/mi) (9.1)

~xi(tk+1) = ~xi(tk) + ∆t~vi(tk). (9.2)

From the given initial configuration, we can derive the next time step configuration using the
formulae by first finding the force, from which we can derive velocity, and then position, and then
force at the next time step.

~Fi → vi(tk) → xi(tk + ∆t) → ~Fi+1.

High order numerical methods can be used here to improve the simulation. In fact, the Euler
method that uses uniform time step discretization performs poorly during the simulation when two
bodies are very close. We may need to use non-uniform discretization or a sophisticated time scale
that may vary for different regions of the N-body system.

In one region of our simulation, for instance, there might be an area where there are few bodies,
and each is moving slowly. The positions and velocities of these bodies, then, do not need to be
sampled as frequently as in other, higher activity areas, and can be determined by extrapolation.
See figure 9.3 for illustration.1

How many floating point operations (flops) does each step of the Euler method take? The
velocity update (step 1) takes 2n floating point multiplications and one addition and the position
updating (step 2) takes 1 multiplication and one addition. Thus, each Euler step takes 5n floating
point operations. In Big-O notation, this is an O(n) time calculation with a constant factor 5.

Notice also, each Euler step can be parallelized without communication overhead. In data
parallel style, we can express steps (1) and (2), respectively, as

V = V + ∆t(F/M)

X = X + ∆tV,

where V is the velocity array; X is the position array; F is the force array; and M is the mass
array. V, X, F, M are 3×n arrays with each column corresponding to a particle. The operator / is
the elementwise division.

1In figure 9.3 we see an example where we have some close clusters of bodies, and several relatively disconnected

bodies. For the purposes of the simulation, we can ignore the movement of relatively isolated bodies for short periods

of time and calculate more frames of the proximous bodies. This saves computation time and grants the simulation

more accuracy where it is most needed. In many ways these sampling techniques are a temporal analogue of the later

discussed Barnes and Hut and Multipole methods.

6 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Low sampling rate

Medium sampling rate

High sampling rate

Figure 9.3: Adaptive Sampling Based on Proximity

9.7 Methods for Force Calculation

Computationally, the force calculation is the most time expensive step for N-body simulation. We
now discuss some methods for computing forces.

9.7.1 Direct force calculation

The simplest way is to calculate the force directly from the definition.

~Fij = G
mimj

r2
= G

mimj

| ~xj − ~xi|3
(~xj − ~xi),

Note that the step for computing ~Fij takes 9 flops. It takes n flops to add ~Fij (1 ≤ j ≤ n).

Since ~Fij = − ~Fji, the total number of flops needed is roughly 5n2. In Big-O notation, this is an
O(n2) time computation. For large scale simulation (e.g., n = 100 million), the direct method is
impractical with today’s level of computing power.

It is clear, then, that we need more efficient algorithms. The one fact that we have to take
advantage of is that in a large system, the effects of individual distant particles on each other may
be insignificant and we may be able to disregard them without significant loss of accuracy. Instead
we will cluster these particles, and deal with them as though they were one mass. Thus, in order
to gain efficiency, we will approximate in space as we did in time by discretizing.

9.7.2 Potential based calculation

For N-body simulations, sometimes it is easier to work with the (gravitational) potential rather
than with the force directly. The force can then be calculated as the gradient of the potential.

In three dimensions, the gravitational potential at position ~x defined by n bodies with masses
m1, ..., mn at position ~x1,, ~xn, respectively is equal to

Φ(~x) =
n
∑

i=1

G
mi

||~x − ~xi||
.

The force acting on a body with unit mass at position ~x is given by the gradient of Φ, i.e.,

F = −∇Φ(x).

Preface 7

The potential function is a sum of local potential functions

φ(~x) =
n
∑

i=1

φ~xi
(~x) (9.3)

where the local potential functions are given by

φ~xi
(~x) =

G ∗ mi

||~x − ~xi||
in <3 (9.4)

9.7.3 Poisson Methods

The earlier method from 70s is to use Poisson solver. We work with the gravitational potential
field rather than the force field. The observation is that the potential field can be expressed as the
solution of a Poisson equation and the force field is the gradient of the potential field.

The gravitational potential at position ~x defined by n bodies with masses m1, ..., mn at position
~x1,, ~xn, respectively is equal to

Φ(~x) =
n
∑

i=1

G
mi

|~x − ~xi|
.

The force acting on a body with unit mass at position ~x is given by the gradient of Φ:

~F = −∇Φ(~x).

So, from Φ we can calculate the force field (by numerical approximation).
The potential field Φ satisfies a Poisson equation:

∇2Φ =
∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
= ρ(x, y, z),

where ρ measures the mass distribution can be determined by the configuration of the N -body
system. (The function Φ is harmonic away from the bodies and near the bodies, div∇Φ = ∇2Φ is
determined by the mass distribution function. So ρ = 0 away from bodies).

We can use finite difference methods to solve this type of partial differential equations. In three
dimensions, we discretize the domain by a structured grid.

We approximate the Laplace operator ∇2 by finite difference and obtain from ∇2Φ = ρ(x, y, z)
a system of linear equations. Let h denote the grid spacing. We have

Φ(xi, yj , zk) =
1

h2
(Φ(xi + h, yj , zk) + Φ(xi − h, yj , zk) + Φ(xi, yj + h, zk)

+Φ(xi, yj − h, zk) + Φ(xi, yj , zk + h) + Φ(xi, yj , zk − h) − 6φ(xi, yj , zk))

= ρ(xi, yj , zk).

The resulting linear system is of size equal to the number of grid points chosen. This can be solved
using methods such as FFT (fast Fourier transform), SOR (successive overrelaxation), multigrid
methods or conjugate gradient. If n bodies give a relatively uniform distribution, then we can use
a grid which has about n grid points. The solution can be fairly efficient, especially on parallel
machines. For highly non-uniform set of bodies, hybrid methods such as finding the potential
induced by bodies within near distance by direct method, and approximate the potential field
induced by distant bodies by the solution of a much smaller Poisson equation discretization. More
details of these methods can be found in Hockney and Eastwood’s book.

8 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

rr1 r2

m particles n particles

Figure 9.4: Well-separated Clusters

9.7.4 Hierarchical methods

We now discuss several methods which use a hierarchical structure to decompose bodies into clus-
ters. Then the force field is approximated by computing the interaction between bodies and clusters
and/or between clusters and clusters. We will refer this class of methods hierarchical methods or
tree-code methods.

The crux of hierarchical N-body methods is to decompose the potential at a point x, φ(x), into
the sum of two potentials: φN (x), the potential induced by “neighboring” or “near-field” particles;
and φF (x), the potential due to “far-field” particles [5, 44]. In hierarchical methods, φN (x) is
computed exactly, while φF (x) is computed approximately.

The approximation is based on a notion of well-separated clusters [5, 44]. Suppose we have two
clusters A and B, one of m particles and one of n particles, the centers of which are separated by
a distance r. See Figure 9.4.

Suppose we want to find the force acting on all bodies in A by those in B and vice versa. A
direct force calculation requires O(mn) operations, because for each body in A we need to compute
the force induced by every body in B.

Notice that if r is much larger than both r1 and r2, then we can simplify the calculation
tremendously by replacing B by a larger body at its center of mass and replacing A by a larger
body at its center of mass. Let MA and MB be the total mass of A and B, respectively. The center
of mass cA and cB is given by

cA =

∑

i∈A mixi

MA

cB =

∑

j∈B mjxj

MB
.

We can approximate the force induced by bodies in B on a body of mass mx located at position
s by viewing B as a single mass MB at location cB. That is,

F (x) ≈ GmxMB(x − cB)

||x − cB||3
.

Such approximation is second order: The relative error introduced by using center of mass is
bounded by (max(r1, r2)/r)2. In other words, if f(x) be the true force vector acting on a body at

Preface 9

P Pl r

P

Figure 9.5: Binary Tree (subdivision of a straight line segment)

x, then

F (x) = f(x)

(

1 + O

(

(

max(r1, r2)

r

)2
))

.

This way, we can find all the interaction forces between A and B in O(n + m) time. The force
calculations between one m particle will computed separately using a recursive construction. This
observation gives birth the idea of hierarchical methods.

We can also describe the method in terms of potentials. If r is much larger than both r1 and r2,
i.e., A and B are “well-separated”, then we can use the pth order multipole expansion (to be given
later) to express the pth order approximation of potential due to all particles in B. Let Φp

B(x)
denote such a multipole expansion. To (approximately) compute the potential at particles in A,
we simply evaluate Φp

B() at each particle in A. Suppose Φp
B() has g(p, d) terms. Using multipole

expansion, we reduce the number of operations to g(p, d)(|A| + |B|). The error of the multipole-
expansion depends on p and the ratio max(r1, r2)/r. We say A and B are β-well-separated, for a
β > 2, if max(r1, r2)/r ≤ 1/β. As shown in [44], the error of the pth order multipole expansion is
bounded by (1/(β − 1))p.

9.8 Quadtree (2D) and Octtree (3D) : Data Structures for Canon-
ical Clustering

Hierarchical N-body methods use quadtree (for 2D) and octtree (for 3D) to generate a canonical
set of boxes to define clusters. The number of boxes is typically linear in the number of particles,
i.e., O(n).

Quadtrees and octtrees provide a way of hierarchically decomposing two dimensional and three
dimensional space. Consider first the one dimensional example of a straight line segment. One way
to introduce clusters is to recursively divide the line as shown in Figure 9.5.

This results in a binary tree2.

In two dimensions, a box decomposition is used to partition the space (Figure 9.6). Note that
a box may be regarded as a “product” of two intervals. Each partition has at most one particle in
it.

2A tree is a graph with a single root node and a number of subordinate nodes called leaves or children. In a binary

tree, every node has at most two children.

10 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 9.6: Quadtree

Figure 9.7: Octtree

A quadtree [88] is a recursive partition of a region of the plane into axis-aligned squares. One
square, the root , covers the entire set of particles. It is often chosen to be the smallest (up to a
constant factor) square that contains all particles. A square can be divided into four child squares,
by splitting it with horizontal and vertical line segments through its center. The collection of squares
then forms a tree, with smaller squares at lower levels of the tree. The recursive decomposition
is often adaptive to the local geometry. The most commonly used termination condition is: the
division stops when a box contains less than some constant (typically m = 100) number of particles
(See Figure 9.6).

In 2D case, the height of the tree is usually log2

√
N . This is in the order of . The complexity

of the problem is N · O(log(N)).

Octtree is the three-dimension version of quadtree. The root is a box covering the entire set
of particles. Octtree are constructed by recursively and adaptively dividing a box into eight child-
boxes, by splitting it with hyperplanes normal to each axes through its center (See Figure 9.7).

9.9 Barnes-Hut Method (1986)

The Barnes-Hut method uses these clustered data structures to represent the bodies in the simu-
lation, and takes advantage of the distant-body simplification mentioned earlier to reduce compu-
tational complexity to O(n log(n)).

The method of Barnes and Hut has two steps.

1. Upward evaluation of center of mass

Preface 11

m
1

m
2

m
4

m
3

c
2

c
1

c
4

c
3

Figure 9.8: Computing the new Center of Mass

Refer to Figure 9.6 for the two dimensional case. Treating each box as a uniform cluster, the
center of mass may be hierarchically computed. For example, consider the four boxes shown
in Figure 9.8.

The total mass of the system is

m = m1 + m2 + m3 + m4 (9.5)

and the center of mass is given by

~c =
m1 ~c1 + m2 ~c2 + m3 ~c3 + m4 ~c4

m
(9.6)

The total time required to compute the centers of mass at all layers of the quadtree is pro-
portional to the number of nodes, or the number of bodies, whichever is greater, or in Big-O
notation, O(n + v), where v is for vertex

This result is readily extendible to the three dimensional case.

Using this approximation will lose some accuracy. For instance, in 1D case, consider three
particles locate at x = −1, 0, 1 with strength m = 1. Consider these three particles as a
cluster, the total potential is

V (x) =
1

x
+

1

x − 1
+

1

x + 1
.

Expand the above equation using Taylor’s series,

V (x) =
3

x
+

2

x3
+

2

x5
+

. It is seen that high order terms are neglected. This brings the accuracy down when x is
close to the origin.

2. Pushing the particle down the tree

Consider the case of the octtree i.e. the three dimensional case. In order to evaluate the
potential at a point ~xi, start at the top of the tree and move downwards. At each node, check
whether the corresponding box, b, is well separated with respect to ~xi (Figure 9.9).

Let the force at point ~xi due to the cluster b be denoted by ~F (i, b). This force may be
calculated using the following algorithm:

12 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

x
_ b

Figure 9.9: Pushing the particle down the tree

• if b is “far” i.e. well separated from ~xi, then

~F (~xi) := ~F (~xi) +
GmxMb(~x − ~cb)

||~xi − ~cb||3
in <3 (9.7)

• else if b is “close” to ~xi

for k = 1 to 8

~F (~xi) = ~F (~xi) + ~F (i, child(b, k)) (9.8)

(9.9)

The computational complexity of pushing the particle down the tree has the upper bound
9hn, where h is the height of the tree and n is the number of particles. (Typically, for more
or less uniformly distributed particles, h = log4 n.)

9.9.1 Approximating potentials

We now rephrase Barnes and Hut scheme in term of potentials. Let

mA = total mass of particles in A

mB = total mass of particles in B

~cA = center of mass of particles in A

~cB = center of mass of particles in B

The potential at a point ~x due to the cluster B, for example, is given by the following second order
approximation:

φ(~x) ≈ mB

||~x − ~cB||
(1 +

1

δ2
) in <3 (9.10)

In other words, each cluster may be regarded as an individual particle when the cluster is sufficiently
far away from the evaluation point ~x.

A more advanced idea is to keep track of a higher order (Taylor expansion) approximation of
the potential function induced by a cluster. Such an idea provides better tradeoff between time
required and numerical precision. The following sections provide the two dimensional version of
the fast multipole method developed by Greengard and Rokhlin.

Preface 13

The Barnes-Hut method discussed above uses the particle-cluster interaction between two well-
separated clusters. Greengard and Rokhlin showed that the cluster-cluster intersection among
well-separated clusters can further improve the hierarchical method. Suppose we have k clusters
B1 ..., Bk that are well-separated from a cluster A. Let Φp

i () be the pth order multipole expansion
of Bi. Using particle-cluster interaction to approximate the far-field potential at A, we need to
perform g(p, d)|A|(|B1| + |B2| + ... + |Bk|) operations. Greengard and Rokhlin [44] showed that
from Φp

i () we can efficiently compute a Taylor expansion Ψp
i () centered at the centroid of A that

approximates Φp
i (). Such an operation of transforming Φp

i () to Ψp
i () is called a FLIP. The cluster-

cluster interaction first flips Φp
i () to Ψp

i (); we then compute Ψp
A() =

∑k
i=1 Ψp

i () and use Ψp
A() to

evaluate the potential at each particle in A. This reduces the number of operations to the order of

g(p, d)(|A| + |B1| + |B2| + ... + |Bk|).

9.10 Outline

• Introduction

• Multipole Algorithm: An Overview

• Multipole Expansion

• Taylor Expansion

• Operation No. 1 — SHIFT

• Operation No. 2 — FLIP

• Application on Quad Tree

• Expansion from 2-D to 3-D

9.11 Introduction

For N-body simulations, sometimes, it is easier to work with the (gravitational) potential rather
than with the force directly. The force can then be calculated as the gradient of the potential.

In two dimensions, the potential function at zj due to the other bodies is given by

φ(zj) =
n
∑

i=1,i6=j

qi log(zj − zi)

=
n
∑

i=1,i6=j

φzi
(zj)

with
φzi

(z) = qi log |z − zi|
where z1, . . ., zn the position of particles, and q1, . . ., qn the strength of particles. The potential
due to the bodies in the rest of the space is

φ(z) =
n
∑

i=1

qi log(z − zi)

14 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Z

Z

Z

Z

Z

Z

1

2

Point

3

4

n

Zc

Faraway
Evaluation

Cluster of Bodies

Figure 9.10: Potential of Faraway Particle due to Cluster

which is singular at each potential body. (Note: actually the potential is Re φ(z) but we take the
complex version for simplicity.)

With the Barnes and Hut scheme in term of potentials, each cluster may be regarded as an
individual particle when the cluster is sufficiently far away from the evaluation point. The following
sections will provide the details of the fast multipole algorithm developed by Greengard and Rokhlin.

Many people are often mystified why the Green’s function is a logarithm in two dimensions,
while it is 1/r in three dimensions. Actually there is an intuitive explanation. In d dimensions
the Green’s function is the integral of the force which is proportional 1/rd−1. To understand the
1/rd−1 just think that the lines of force are divided “equally” on the sphere of radius r. One might
wish to imagine an d dimensional ball with small holes on the boundary filled with d dimensional
water. A hose placed at the center will force water to flow out radially at the boundary in a uniform
manner. If you prefer, you can imagine 1 ohm resistors arranged in a polar coordinate manner,
perhaps with higher density as you move out in the radial direction. Consider the flow of current
out of the circle at radius r if there is one input current source at the center.

9.12 Multipole Algorithm: An Overview

There are three important concepts in the multipole algorithm:

• function representations (multipole expansions and Taylor series)

• operators to change representations (SHIFTs and FLIPs)

• the general tree structure of the computation

9.13 Multipole Expansion

The multipole algorithm flips between two point of views, or to be more precise, two representations
for the potential function. One of them, which considers the cluster of bodies corresponding to
many far away evaluation points, is treated in detail here. This part of the algorithm is often called
the Multipole Expansion.

In elementary calculus, one learns about Taylor expansions for functions. This power series
represents the function perfectly within the radius of convergence. A multipole expansion is also

Preface 15

a perfectly valid representation of a function which typically converges outside a circle rather than
inside. For example, it is easy to show that

φzi
(z) = qi log(z − zi)

= qi log(z − zc) +
∞
∑

k=1

−qi

k

(

zi − zc

z − zc

)k

where zc is any complex number. This series converges in the region |z − zc| > |z − zi|, i.e., outside
of the circle containing the singularity. The formula is particularly useful if |z − zc| � |z − zi|, i.e.,
if we are far away from the singularity.

Note that

φzi
(z) = qi log(z − zi)

= qi log[(z − zc) − (zi − zc)]

= qi

[

log(z − zc) + log(1 − zi − zc

z − zc
)

]

The result follows from the Taylor series expansion for log(1 − x). The more terms in the Taylor
series that are considered, the higher is the order of the approximation.

By substituting the single potential expansion back into the main equation, we obtain the
multipole expansion as following

φ(z) =
n
∑

i=1

φzi
(z)

=
n
∑

i=1

qi log(z − zc) +
n
∑

i=1

∞
∑

k=1

qi

(

−1

k

(

zi − zc

z − zc

)k
)

= Q log(z − zc) +
∞
∑

k=1

ak

(

1

z − zc

)k

where

ak = −
n
∑

i=1

qi(zi − zc)
k

k

When we truncate the expansion due to the consideration of computation cost, an error is
introduced into the resulting potential. Consider a p-term expansion

φp(z) = Q log(z − zc) +
p
∑

k=1

ak
1

(z − zc)k

An error bound for this approximation is given by

||φ(z) − φp(z)|| ≤ A
(∣

∣

z−zc

r

∣

∣− 1
)

∣

∣

∣

∣

r

z − zc

∣

∣

∣

∣

p

where r is the radius of the cluster and

A =
n
∑

i=1

|qi|

16 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

ZC

Z1

Z2

Z

Evaluation Points

Z

3

4

q

q

q

1

2

3

Faraway

Cluster of

Figure 9.11: Potential of Particle Cluster

This result can be shown as the following

Error =

∣

∣

∣

∣

∣

∣

∞
∑

k=p+1

ak
1

(z − zc)k

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

−
∞
∑

k=p+1

n
∑

i=1

qi

k

(

zi − zc

z − zc

)k
∣

∣

∣

∣

∣

∣

≤
∞
∑

k=p+1

n
∑

i=1

|qi|
∣

∣

∣

∣

r

z − zc

∣

∣

∣

∣

k

≤ A
∞
∑

k=p+1

∣

∣

∣

∣

r

z − zc

∣

∣

∣

∣

k

≤ A

∣

∣

∣

r
z−zc

∣

∣

∣

p+1

1 −
∣

∣

∣

r
z−zc

∣

∣

∣

≤ A
(∣

∣

z−zc

r

∣

∣− 1
)

∣

∣

∣

∣

r

z − zc

∣

∣

∣

∣

p

At this moment, we are able to calculate the potential of each particle due to cluster of far away
bodies, through multipole expansion.

9.14 Taylor Expansion

In this section, we will briefly discuss the other point of view for the multipole algorithm, which
considers the cluster of evaluation points with respect to many far away bodies. It is called Taylor
Expansion. For this expansion, each processor ”ownes” the region of the space defined by the
cluster of evaluation points, and compute the potential of the cluster through a Taylor series about
the center of the cluster zc.

Generally, the local Taylor expansion for cluster denoted by C (with center zc) corresponding

Preface 17

to some body z has the form

φC,zc
(z) =

∞
∑

k=0

bk(z − zc)
k

Denote z−zi = (z−zc)−(zi−zc) = −(zi−zc)(1−ξ). Then for z such that |z−zc| < min(zc, C),
we have |ξ| < 1 and the series φC,zc

(z) converge:

φC,zc
(z) =

∑

C

qi log(−(zi − zc)) +
∑

C

qi log(1 − ξ)

=
∑

C

qi log(−(zi − zc)) +
∞
∑

k=1

(

∑

C

qi

)

k−1(zi − zc)
−k(z − zc)

k

= b0 +
∞
∑

k=1

bk(z − zc)
k

where formulæ for coefficients are

b0 =
∑

C

qi log(−(zi − zc)) and bk = k−1
∑

C

qi(zi − zc)
−k k > 0.

Define the p-order truncation of local expansion φp
C,zc

as follows

φp
C,zc

(z) =
p
∑

k=0

bk(z − zc)
k.

We have error bound

∣

∣

∣φC,zc
(z) − φp

C,zc
(z)
∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∞
∑

k=p+1

k−1
∑

C

qi

(

z − zc

zi − zc

)k
∣

∣

∣

∣

∣

∣

≤ 1

p + 1

∑

C

|qi|
∞
∑

k=p+1

∣

∣

∣

∣

z − zc

min(zc, C)

∣

∣

∣

∣

k

=
A

(1 + p)(1 − c)
cp+1,

where A =
∑

C |qi| and c = |z − zc|/ min(zc, C) < 1.

By now, we can also compute the local potential of the cluster through the Taylor expansion.
During the process of deriving the above expansions, it is easy to see that

• Both expansions are singular at the position of any body;

• Multipole expansion is valid outside the cluster under consideration;

• Taylor expansion converges within the space defined the cluster.

At this point, we have finished the basic concepts involved in the multipole algorithm. Next, we will
begin to consider some of the operations that could be performed on and between the expansions.

18 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Z

C-Child2Z

C-Child1Z C-Child3Z

C-Child4Z

C-Parent

Figure 9.12: SHIFT the Center of Reference

9.15 Operation No.1 — SHIFT

Sometimes, we need to change the location of the center of the reference for the expansion series,
either the multipole expansion or the local Taylor expansion. To accomplish this goal, we will
perform the SHIFT operation on the expansion series.

For the multipole expansion, consider some far away particle with position z such that both
series φz0

and φz1
, corresponding to different center of reference z0 and z1, converge: |z − z0| >

max(z0, C) and |z − z1| > max(z1, C). Note that

z − z0 = (z − z1) − (z0 − z1) = (z − z1)

(

1 − z0 − z1

z − z1

)

= (z − z1)(1 − ξ)

for appropriate ξ and if we also assume z sufficiently large to have |ξ| < 1, we get identity

(1 − ξ)−k =

(

∞
∑

l=0

ξl

)k

=
∞
∑

l=0

(

k + l − 1

l

)

ξl.

Now, we can express the SHIFT operation for multipole expansion as

φz1
(z) = SHIFT (φz0

(z), z0 ⇒ z1)

= SHIFT

(

a0 log(z − z0) +
∞
∑

k=1

ak(z − z0)
−k, z0 ⇒ z1

)

= a0 log(z − z1) + a0 log(1 − ξ) +
∞
∑

k=1

ak(1 − ξ)−k(z − z1)
−k

= a0 log(z − z1) − a0

∞
∑

k=1

k−1ξk +
∞
∑

k=1

∞
∑

l=1

ak

(

k + l − 1

l

)

ξl(z − z1)
−k

= a0 log(z − z1) +
∞
∑

l=1

(

l
∑

k=1

ak(z0 − z1)
l−k

(

l − 1

k − 1

)

− a0l
−1(z0 − z1)

l

)

(z − z1)
−l

We can represent φz1
(z) as a sequence of its coefficients a′

k:

a′0 = a0 and a′l =
l
∑

k=1

ak(z0 − z1)
l−k

(

l − 1

k − 1

)

− a0l
−1(z0 − z1)

l l > 0.

Preface 19

Note that a′l depends only on a0, a1, . . . , al and not on the higher coefficients. It shows that
given φp

z0
we can compute φp

z1
exactly, that is without any further error! In other words, operators

SHIFT and truncation commute on multipolar expansions:

SHIFT (φp
z0

, z0 ⇒ z1) = φp
z1

.

Similarly, we can obtain the SHIFT operation for the local Taylor expansion, by extending the
operator on the domain of local expansion, so that SHIFT (φC,z0

, z0 ⇒ z1) produces φC,z1
. Both

series converges for z such that |z − z0| < min(z0, C), |z − z1| < min(z1, C). Then

φC,z1
(z) = SHIFT (φC,z0

(z), z0 ⇒ z1)

=
∞
∑

k=0

bk((z − z1) − (z0 − z1))
k

=
∞
∑

k=0

bk

∞
∑

l=0

(−1)k−l

(

k

l

)

(z0 − z1)
k−l(z − z1)

l

=
∞
∑

l=0

(

∞
∑

k=l

bk(−1)k−l

(

k

l

)

(z0 − z1)
k−l

)

(z − z1)
l

Therefore, formula for transformation of coefficients bk of φC,z0
to b′l of φC,z1

are

b′l =
∞
∑

k=l

ak(−1)k−l

(

k

l

)

(z0 − z1)
k−l.

Notice that in this case, b′l depends only on the higher coefficients, which means knowledge of
the coefficients b0, b1, . . . , bp from the truncated local expansion in z0 does not suffice to recover the
coefficients b′0, b

′
1, . . . b

′
p at another point z1. We do incur an error by the SHIFT operation applied

to truncated local expansion:

∣

∣

∣SHIFT (φp
C,z0

, z0 ⇒ z1) − φp
C,z1

∣

∣

∣ =

∣

∣

∣

∣

∣

∣

∞
∑

l=0

∞
∑

k=p+1

bk(−1)k−l(z0 − z1)
k−l

 (z − z1)
l

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∞
∑

k=p+1

bk(z1 − z0)
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

l=0

(

z − z1

z1 − z0

)l
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∞
∑

k=p+1

k−1
∑

C

qi

(

z1 − z0

zi − z0

)k
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

l=0

(

z − z1

z0 − z1

)l
∣

∣

∣

∣

∣

≤ A

(p + 1)(1 − c)(1 − D)
cp+1,

where A =
∑

C |qi|. c = |z1 − z0|/ min(z0, C) and D = |z − z1|/|z0 − z1|.
At this moment, we have obtained all the information needed to perform the SHIFT operation

for both multipole expansion and local Taylor expansion. Next, we will consider the operation
which can transform multipole expansion to local Taylor expansion.

9.16 Operation No.2 — FLIP

At this section, we will introduce the more powerful operation in multipole algorithm, namely
the FLIP operation. For now, we will consider only the transformation in the direction from the

20 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

I I

Taylor Expansion

I

I

I

N

N

N

C

Multipole Expansion

FLIP

Figure 9.13: FLIP from Multipole to Taylor Expansion

multipole expansion φz0
(z) to the local Taylor expansion φC,z1

(z), denoted by

FLIP (φz0
, z0 ⇒ z1) = φC,z1

For |z − z0| > max(z0, C) and |z − z1| < min(z1, C) both series converge. Note that

z − z0 = −(z0 − z1)(1 − z − z1

z0 − z1
) = −(z0 − z1)(1 − ξ)

and assume also |ξ| < 1. Then,

φz0
(z) = a0 log(z − z0) +

∞
∑

k=1

ak(z − z0)
−k

= a0 log(−(z0 − z1)) + a0 log(1 − ξ) +
∞
∑

k=1

ak(−1)k(z0 − z1)
−k(1 − ξ)−k

= a0 log(−(z0 − z1)) +
∞
∑

l=1

− a0l
−1ξl +

∞
∑

k=1

(−1)kak(z0 − z1)
−k

∞
∑

l=0

(

k + l − 1

l

)

ξl

=

(

a0 log(−(z0 − z1)) +
∞
∑

k=1

(−1)kak(z0 − z1)
−k

)

+

∞
∑

l=1

(

a0l
−1(z0 − z1)

−l +
∞
∑

k=1

(−1)kak

(

k + l − 1

l

)

(z0 − z1)
−(k+l)

)

(z − z1)
l.

Therefore coefficients ak of φz0
transform to coefficients bl of φC,z1

by the formula

b0 = a0 log(−(z0 − z1)) +
∞
∑

k=1

(−1)kak(z0 − z1)
−k

bl = a0l
−1(z0 − z1)

−l +
∞
∑

k=1

(−1)kak

(

k + l − 1

l

)

(z0 − z1)
−(k+l) l > 0

Note that FLIP does not commute with truncation since one has to know all coefficients
a0, a1, . . . to compute b0, b1, . . . , bp exactly. For more information on the error in case of truncation,
see Greengard and Rokhlin (1987).

Preface 21

N

C

N

N

Figure 9.14: First Level of Quad Tree

C

I

N I I

I

I

I I

I

NN

II

I I

Figure 9.15: Second Level of Quad Tree

9.17 Application on Quad Tree

In this section, we will go through the application of multipole algorithm on quad tree in detail.
During the process, we will also look into the two different operations SHIFT and FLIP , and
gain some experience on how to use them in real situations.

We will start at the lowest level h of the tree. For every node of the tree, it computes the
multipole expansion coefficients for the bodies inside, with origin located at the center of the cell.
Next, it will shift all of the four centers for the children cells into the center of the parent node,
which is at the h − 1 level, through the SHIFT operation for the multipole expansion. Adding up
the coefficients from the four shifted expansion series, the multipole expansion of the whole parent
node is obtained. And this SHIFT and ADD process will continue upward for every level of the
tree, until the multipole expansion coefficients for each node of the entire tree are stored within
that node. The computational complexity for this part is O(N).

Before we go to the next step, some terms have to be defined first.

• NEIGHBOR — a neighbor N to a cell C is defined as any cell which shares either an edge
or a corner with C

• INTERACTIVE — an interactive cell I to a cell C is defined as any cell whose parent is a
neighbor to parent of C, excluding those which are neighbors to C

22 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

F

C

F F F F F

F

F

F F F F F

F

F F

F

FF

F

I

I

I I I

I

I

I

I

I

I

I

N N

N

Figure 9.16: Third Level of Quad Tree

• FARAWAY — a faraway cell F to a cell C is defined as any cell which is neither a neighbor
nor an interactive to C

Now, we start at the top level of the tree. For each cell C, FLIP the multipole expansion for the
interactive cells and combine the resulting local Taylor expansions into one expansion series. After
all of the FLIP and COMBINE operations are done, SHIFT the local Taylor expansion from the
node in this level to its four children in the next lower level, so that the information is conserved
from parent to child. Then go down to the next lower level where the children are. To all of
the cells at this level, the faraway field is done (which is the interactive zone at the parent level).
So we will concentrate on the interactive zone at this level. Repeat the FLIP operation to all of
the interactive cells and add the flipped multipole expansion to the Taylor expansion shifted from
parent node. Then repeat the COMBINE and SHIFT operations as before. This entire process
will continue from the top level downward until the lowest level of the tree. In the end, add them
together when the cells are close enough.

9.18 Expansion from 2-D to 3-D

For 2-D N-body simulation, the potential function is given as

φ(zj) =
n
∑

i=1

qi log(zj − zi)

where z1, . . ., zn the position of particles, and q1, . . ., qn the strength of particles. The corresponding
multipole expansion for the cluster centered at zc is

φzc
(z) = a0 log(z − zc) +

∞
∑

k=1

ak
1

(z − zc)k

The corresponding local Taylor expansion looks like

φC,zc
(z) =

∞
∑

k=0

bk
1

(z − zc)k

Preface 23

In three dimensions, the potential as well as the expansion series become much more compli-
cated. The 3-D potential is given as

Φ(x) =
n
∑

i=1

qi
1

||x − xi||

where x = f(r, θ, φ). The corresponding multipole expansion and local Taylor expansion as follow-
ing

Φmultipole(x) =
∞
∑

n=0

1

rn+1

n
∑

m=−n

am
n Y m

n (θ, φ)

ΦTaylor(x) =
∞
∑

n=0

n
∑

m=−n

rnbm
n Y m

n (θ, φ)

where Y m
n (θ, φ) is the Spherical Harmonic function. For a more detailed treatment of 3-D expan-

sions, see Nabors and White (1991).

9.19 Parallel Implementation

In Chapter ??, we will discussion issues on parallel N-body implementation.

