
Lecture 8

Domain Decomposition

Domain decomposition is a term used by at least two different communities. Literally, the words
indicate the partitioning of a region. As we will see in Chapter ?? of this book, an important
computational geometry problem is to find good ways to partition a region. This is not what we
will discuss here.

In scientific computing, domain decomposition refers to the technique of solving partial differ-
ential equations using subroutines that solve problems on subdomains. Originally, a domain was
a contiguous region in space, but the idea has generalized to include any useful subset of the dis-
cretization points. Because of this generalization, the distinction between domain decomposition
and multigrid has become increasingly blurred.

Domain decomposition is an idea that is already useful on serial computers, but it takes on a
greater importance when one considers a parallel machine with, say, a handful of very powerful
processors. In this context, domain decomposition is a parallel divide-and-conquer approach to
solving the PDE.

To guide the reader, we quickly summarize the choice space that arises in the domain decom-
position literature. As usual a domain decomposition problem starts as a continuous problem on a
region and is disretized into a finite problem on a discrete domain.

We will take as our model problem the solution of the elliptic equation ∇2u = f , where on
a region Ω which is the union of at least subdomains Ω1 and Ω2. ∇2 is the Laplacian operator,
defined by ∇2u = ∂2u

∂x2 + ∂2u
∂y2 . Domain decomposition ideas tend to be best developed for elliptic

problems, but may be applied in more general settings.

1

2 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Ω ΩΣ Σσ σ1 21 22 1

Figure 8.1: Example domain of circle and square with overlap

Ω

Ω←→ nn

1

2

21

Figure 8.2: Domain divided into two subdomains without overlap

Ω
Ω

Ω2

3

1
4

5Ω
Ω

Figure 8.3: Example domain with many overlapping regions

Preface 3

Domain Decomposition Outline

1. Geometric Issues

Overlapping or non-overlapping regions

Geometric Discretization

Finite Difference or Finite Element

Matching or non-matching grids

2. Algorithmic Issues

Algebraic Discretization

Schwarz Approaches: Additive vs. Multiplicative

Substructuring Approaches

Accelerants

Domain Decomposition as a Preconditioner

Course (Hierarchical/Multilevel) Domains

3. Theoretical Considerations

8.1 Geometric Issues

The geometric issues in domain decomposition are 1) how are the domains decomposed into subre-
gions, and 2) how is the region discretized using some form of grid or irregular mesh. We consider
these issues in turn.

8.1.1 Overlapping vs. Non-overlapping regions

So as to emphasize the issue of overlap vs. non-overlap, we can simplify all the other issues by
assuming that we are solving the continuous problem (no discretization) exactly on each domain
(no choice of algorithm). The reader may be surprised to learn that domain decomposition methods
divide neatly into either being overlapping or nonoverlapping methods. Though one can find much
in common between these two methods, they are really rather different in flavor. When there is
overlap, the methods are sometimes known as Schwarz methods, while when there is no overlap,
the methods are sometimes known as substructuring. (Historically, the former name was used in
the continuous case, and the latter in the discrete case, but this historical distinction has been, and
even should be, blurred.)

We begin with the overlapping region illustrated in Figure 8.1. Schwarz in 1870 devised an
obvious alternating procedure for solving Poisson’s equation ∇2u = f :

1. Start with any guess for u2 on σ1.

2. Solve ∇2u1 = f on Ω1 by taking u1 = u2 on σ1. (i.e. solve in the square using boundary data
from the interior of the circle)

3. Solve ∇2u2 = f on Ω2 by taking u2 = u1 on σ2 (i.e. solve in the circle using boundary data
from the interior of the square)

4. Goto 2 and repeat until convergence is reached

4 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

The procedure above is illustrated in Figure 8.4.
One of the characteristics of elliptic PDE’s is that the solution at every point depends on global

conditions. The information transfer between the regions clearly occurs in the overlap region.
If we “choke” the transfer of information by considering the limit as the overlap area tends to

0, we find ourselves in a situation typified by Figure 8.2. The basic Schwarz procedure no longer
works. Do you see why? No matter what the choice of data on the interface, it would not be
updated. The result would be that the solution would not be differentiable along the interface. An
example is given in Figure 8.5.

One approach to solving the non-overlapped problem is to concentrate directly on the domain of
intersection. Let g be a current guess for the solution on the interface. We can then solve ∇2u = f
on Ω1 and Ω2 independently using the value of g as Dirichlet conditions on the interface. We can
define the map

T : g →
∂g

∂n1
+

∂g

∂n2
.

This is an affine map from functions on the interface to functions on the interface defined by taking
a function to the jump in the derivative. The operator T is known as the Steklov-Poincaré operator.

Suppose we can find the exact solution to Tg = 0. We would then have successfully decoupled
the problem so that it may be solved independently into the two domains Ω1 and Ω2. This is a
“textbook” illustration of the divide and conquer method, in that solving Tg = 0 constitutes the
“divide.”

8.1.2 Geometric Discretization

In the previous section we contented ourselves with formulating the problem on a continuous
domain, and asserted the existence of solutions either to the subdomain problems in the Schwarz
case, or the Stekhlov-Poincaré operator in the continuous case.

Of course on a real computer, a discretization of the domain and a corresponding discretization
of the equation is needed. The result is a linear system of equations.

Finite Differences or Finite Elements

Finite differences is actually a special case of finite elements, and all the ideas in domain decom-
position work in the most general context of finite elements. In finite differences, one typically
imagines a square mesh. The prototypical example is the five point stencil for the Laplacian in
two dimensions. Using this stencil, the continuous equation ∂2u

∂x2 + ∂2u
∂y2 = f(x, y) is transformed to

a linear system of equations of the form:

−
1

h2
(−ui

E + 2ui − ui
W) −

1

h2
(−ui

N + 2ui − ui
S) = 4fi

where for each ui, ui
E is the element to the right of ui, ui

W is to the left of ui, ui
N is above ui,

and ui
S is below ui. An analog computer to solve this problem would consist of a grid of one

ohm resistors. In finite elements, the protypical example is a triangulation of the region, and the
appropriate formulation of the PDE on these elements.

Matching vs. Non-matching grids

When solving problems as in our square-circle example of Figure 8.1, it is necessary to discretize the
interior of the regions with either a finite difference style grid or a finite element style mesh. The
square may be nicely discretized by covering it with Cartesian graph-paper, while the circle may

Preface 5

���������

�������
	

���������

Figure 8.4: Schwarz’ alternating procedure

6 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

−0.5 0 0.5
1−0.5

0

0.5

0

0.1

0.2

0.3

0.4

0.5

Figure 8.5: Incorrect solution for non-overlaped problem. The result is not differentiable along the
boundary between the two regions.

be more conveniently discretized by covering it with polar graph paper. Under such a situation,
the grids do not match, and it becomes necessary to transfer points interior to Ω2 to the boundary
of Ω1 and vice versa. Figure 8.6 shows an example domain with non-mathing grids. Normally, grid
values are interpolated for this kind of grid line up pattern.

8.2 Algorithmic Issues

Once the domain is discretized, numerical algorithms must be formulated. There is a definite line
drawn between Schwarz (overlapping) and substructuring (non-overlapping) approaches.

Figure 8.6: Example domain discretized into non-matching grids

Preface 7

8.2.1 Classical Iterations and their block equivalents

Let us review the basic classical methods for solving PDE’s
on a discrete domain.

1. Jacobi - At step n, the neighboring values used are from step n − 1
Using Jacobi to solve the system Au=f requires using repeated applications of the iteration:

ui
(n+1) = ui

n +
1

aii
[fi −

∑

j 6=i

aijuj
(n)] ∀ i

2. Gauss-Seidel - Values at step n are used if available, otherwise the values are used from step
n − 1
Gauss-Seidel uses applications the iteration:

ui
(n+1) = ui

n +
1

aii
[fi −

∑

j<i

aijuj
(n+1) −

∑

j>i

aijuj
(n)] ∀ i

3. Red Black Ordering - If the grid is a checkerboard, solve all red points in parallel using black
values at n − 1, then solve all black points in parallel using red values at step n For the
checkerboard, this corresponds to the pair of iterations:

ui
(n+1) = ui

n +
1

aii
[fi −

∑

j 6=i

aijuj
(n)] ∀ i even

ui
(n+1) = ui

n +
1

aii
[fi −

∑

j 6=i

aijuj
(n+1)] ∀ i odd

Analogous block methods may be used on a domain that is decomposed into a number of multiple
regions. Each region is thought of as an element used to solve the larger problem. This is known
as block Jacobi, or block Gauss-Seidel.

1. Block Gauss-Seidel - Solve each region in series using the boundary values at n if available.

2. Block Jacobi - Solve each region on a separate processor in parallel and use boundary values
at n − 1. (Additive scheme)

3. Block coloring scheme - Color the regions so that like colors do not touch and solve all regions
with the same color in parallel. (Multiplicative scheme)

The block Gauss-Seidel algorithm is called a multiplicative scheme for reasons to be explained
shortly. In a corresponding manner, the block Jacobi scheme is called an additive scheme.

8.2.2 Schwarz approaches: additive vs. multiplicative

A procedure that alternates between solving an equation in Ω1 and then Ω2 does not seem to be
parallel at the highest level because if processor 1 contains all of Ω1 and processor 2 contains all
of Ω2 then each processor must wait for the solution of the other processor before it can execute.
Figure 8.4 illustrates this procedure. Such approaches are known as multiplicative approaches
because of the form of the operator applied to the error. Alternatively, approaches that allow for
the solution of subproblems simultaneously are known as additive methods. The latter is illustrated
in Figure 8.7. The difference is akin to the difference between Jacobi and Gauss-Seidel.

8 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

���������

�������
	

���������

Figure 8.7: Schwarz’ alternating procedure (additive)

Preface 9

Overlapping regions: A notational nightmare?

When the grids match it is somewhat more convenient to express the discretized PDE as a simple
matrix equation on the gridpoints.

Unfortunately, we have a notational difficulty at this point. It is this difficulty that is probably
the single most important reason that domain decomposition techniques are not used as extensively
as they can be. Even in the two domain case, the difficulty is related to the fact that we have domains
1 and 2 that overlap each other and have internal and external boundaries. By setting the boundary
to 0 we can eliminate any worry of external boundaries. I believe there is only one reasonable way
to keep the notation manageable. We will use subscripts to denote subsets of indices. d1 and d2

will represent those nodes in domain 1 and domain 2 respectively. b1 and b2 will represent those
notes in the boundary of 1 and 2 respectively that are not external to the entire domain.

Therefore ud1
denotes the subvector of u consisting of those elements interior to domain 1, while

Au1,b1 is the rectangular subarray of A that map the interior of domain 1 to the internal boundary
of domain 1. If we were to write uT as a row vector, the components might break up as follows
(the overlap region is unusually large for emphasis:)

-� �-d1 b1

-��- d2b2

Correspondingly, the matrix A (which of course would never be written down) has the form

The reader should find Ab1,b1 etc., on this picture. To further simplify notation, we write 1 and
2 for d1 and d2,1b and 2b for b1 and b2, and also use only a single index for a diagonal block of a
matrix (i.e. A1 = A11).

Now that we have leisurely explained our notation, we may return to the algebra. Numerical
analysts like to turn problems that may seem new into ones that they are already familiar with. By
carefully writing down the equations for the procedure that we have described so far, it is possible
to relate the classical domain decomposition method to an iteration known as Richardson iteration.
Richardson iteration solves Au = f by computing uk+1 = uk + M(f − Auk), where M is a “good”
approximation to A−1. (Notice that if M = A−1, the iteration converges in one step.)

10 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Problem Domain

Ω1

Ω2I

Figure 8.8: Problem Domain

The iteration that we described before may be written algebraically as

A1u
k+1/2
1 + A1,1b

uk
1b

= f1

A2u
k+1
2 + A2,2b

u
k+1/2
2b

= f2

Notice that values of uk+1/2 updated by the first equation, specifically the values on the boundary
of the second region, are used in the second equation.

With a few algebraic manipulations, we have

u
k+1/2
1 = uk−1

1 + A−1
1 (f − Auk−1)1

uk+1
2 = u

k+1/2
2 + A−1

2 (f − Auk+1/2)2

This was already obviously a Gauss-Seidel like procedure, but those of you familiar with the alge-
braic form of Gauss-Seidel might be relieved to see the form here.

A roughly equivalent block Jacobi method has the form

u
k+1/2
1 = uk−1

1 + A−1
1 (f − Auk−1)1

uk
2 = u

k+1/2
2 + A−1

2 (f − Auk)2

It is possible to eliminate uk+1/2 and obtain

uk+1 = uk + (A−1
1 + A−1

2)(f − Auk),

where the operators are understood to apply to the appropriate part of the vectors. It is here that
we see that the procedure we described is a Richardson iteration with operator M = A−1

1 + A−1
2 .

8.2.3 Substructuring Approaches

Figure 8.8 shows an example domain of a problem for a network of resistors or a discretized region
in which we wish to solve the Poisson equation, 52v = g. We will see that the discrete version of
the Steklov-Poincaré operator has its algebraic equivalent in the form of the Schur complement.

Preface 11

In matrix notation, Av = g, where

A =

A1 0 A1I

0 A2 A2I

AI1 AI2 AI

One of the direct methods to solve the above equation is to use LU or LDU factorization. We
will do an analogous procedure with blocks. We can rewrite A as,

A =

I 0 0
0 I 0

AI1A
−1
1 AI2A

−1
2 I

I 0 0
0 I 0
0 0 S

A1 0 A1I

0 A2 A2I

0 0 I

where,

S = AI − AI1A
−1
1 A1I − AI2A

−1
2 A2I

We really want A−1

A−1 =

A−1
1 0 −A−1

1 A1I

0 A−1
2 −A−1

2 A2I

0 0 I

I 0 0
0 I 0
0 0 S−1

I 0 0
0 I 0

−AI1A
−1
1 −AI2A

−1
2 I

(8.1)

Inverting S turns out to be the hardest part.

A−1

VΩ1

VΩ2

VInterface

→ V oltages in region Ω1

→ V oltages in region Ω2

→ V oltages at interface

Let us examine Equation 8.1 in detail.

In the third matrix,
A−1

1 - Poisson solve in Ω1

AI1 - is putting the solution onto the interface
A−1

2 - Poisson solve in Ω2

AI2 - is putting the solution onto the interface

In the second matrix,
Nothing happening in domain 1 and 2
Complicated stuff at the interface.

In the first matrix we have,
A−1

1 - Poisson solve in Ω1

A−1
2 - Poisson solve in Ω2

A−1
1 A1I and A−1

2 A1I - Transferring solution to interfaces

In the above example we had a simple 2D region with neat squares but in reality we might have
to solve on complicated 3D regions which have to be divided into tetrahedra with 2D regions at
the interfaces. The above concepts still hold.

12 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Getting to S−1,

(

a b
c d

)

=

(

1 0
c/a 1

)(

a b
0 d − bc/a

)

where, d − bc/a is the Schur complement of d.

In Block form
(

A B
C D

)

=

(

1 0
CA−1 1

)(

A B
0 D − CA−1B

)

We have
S = AI − AI1A

−1
1 A1I − AI2A

−1
2 A2I

Arbitrarily break AI as
AI = A1

I + A2
I

Think of A as

A1 0 A1I

0 0 0
AI1 0 A1

I

+

0 0 0
0 A2 A2I

0 AI2 A2
I

Schur Complements are

S1 = A1
I − AI1A

−1
1 A1I

S2 = A2
I − AI2A

−1
2 A2I

and
S = S1 + S2

A−1
1 → Poisson solve on Ω1

A−1
2 → Poisson solve on Ω2

AI1 Ω1 → I
A21 Ω2 → I
A1I I → Ω1

A2I I → Ω2

Sv - Multiplying by the Schur Complement involves 2 Poisson solves and some cheap transfer-
ring.

S−1v should be solved using Krylov methods. People have recommended the use of S−1
1 or S−1

2

or (S−1
1 + S−1

2) as a preconditioner

8.2.4 Accellerants

Domain Decomposition as a Preconditioner

It seems wasteful to solve subproblems extremely accurately during the early stages of the algorithm
when the boundary data is likely to be fairly inaccurate. Therefore it makes sense to run a few
steps of an iterative solver as a preconditioner for the solution to the entire problem.

In a modern approach to the solution of the entire problem, a step or two of block Jacobi
would be used as a preconditioner in a Krylov based scheme. It is important at this point not to

Preface 13

lose track what operations may take place at each level. To solve the subdomain problems, one
might use multigrid, FFT, or preconditioned conjugate gradient, but one may choose to do this
approximately during the early iterations. The solution of the subdomain problems itself may serve
as a preconditioner to the solution of the global problem which may be solved using some Krylov
based scheme.

The modern approach is to use a step of block Jacobi or block Gauss-Seidel as a preconditioner
for use in a Krylov space based subsolver. There is not too much point in solving the subproblems
exactly on the smaller domains (since the boundary data is wrong) just an approximate solution
suffices → domain decomposition preconditioning

Krylov Methods - Methods to solve linear systems : Au=g . Examples have names such
as the Conjugate Gradient Method, GMRES (Generalized Minimum Residual), BCG (Bi Conju-
gate Gradient), QMR (Quasi Minimum Residual), CGS (Conjugate Gradient Squared). For this
lecture, one can think of these methods in terms of a black-box. What is needed is a subroutine
that given u computes Au. This is a matrix-vector multiply in the abstract sense, but of course
it is not a dense matrix-vector product in the sense one practices in undergraduate linear algebra.
The other needed ingredient is a subroutine to approximately solve the system. This is known as a
preconditioner. To be useful this subroutine must roughly solve the problem quickly.

Course (Hierarchical/Multilevel) Techniques

These modern approaches are designed to greatly speed convergence by solving the problem on dif-
ferent sized grids with the goal of communicating information between subdomains more efficiently.
Here the “domain” is a course grid. Mathematically, it is as easy to consider a contiguous domain
consisting of neighboring points, as it is is to consider a course grid covering the whole region.

Up until now, we saw that subdividing a problem did not directly yield the final answer, rather it
simplified or allowed us to change our approach in tackling the resulting subproblems with existing
methods. It still required that individual subregions be composited at each level of refinement to
establish valid conditions at the interface of shared boundaries.

Multilevel approaches solve the problem using a coarse grid over each sub-region, gradually
accommodating higher resolution grids as results on shared boundaries become available. Ideally
for a well balanced multi-level method, no more work is performed at each level of the hierarchy
than is appropriate for the accuracy at hand.

In general a hierarchical or multi-level method is built from an understanding of the difference
between the damping of low frequency and high components of the error. Roughly speaking one
can kill of low frequency components of the error on the course grid, and higher frequency errors
on the fine grid.

Perhaps this is akin to the Fast Multipole Method where p poles that are “well-separated” from
a given point could be considered as clusters, and those nearby are evaluated more precisely on a
finer grid.

8.3 Theoretical Issues

This section is not yet written. The rough content is the mathematical formulation that identifies

subdomains with projection operators.

14 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 8.9: MIT domain

8.4 A Domain Decomposition Assignment: Decomposing MIT

Perhaps we have given you the impression that entirely new codes must be written for parallel
computers, and furthermore that parallel algorithms only work well on regular grids. We now show
you that this is not so.

You are about to solve Poisson’s equation on our MIT domain:
Notice that the letters MIT have been decomposed into 32 rectangles – this is just the right

number for solving
∂2u

dx2
+

∂2u

dy2
= ρ(x, y)

on a 32 processor machine.
To solve the Poisson equation on the individual rectangles, we will use a FISHPACK library

routine. (I know the French would cringe, but there really is a library called FISHPACK for solving
the Poisson equation.) The code is old enough (from the 70’s) but in fact it is too often used to
really call it dusty.

As a side point, this exercise highlights the ease of grabbing kernel routines off the network
these days. High quality numerical software is out there (bad stuff too). One good way to find it
is via the World Wide Web, at http://www.netlib.org. The software you will need for this problem
is found at http://www.netlib.org/netlib/fishpack/hwscrt.f.

All of the rectangles on the MIT picture have sides in the ratio 2 to 1; some are horizontal while
others are vertical. We have arbitrarily numbered the rectangles accoding to scheme below, you
might wish to write the numbers in the picture on the first page.

4 10 21 21 22 22 23 24 24 25 26 26 27

4 5 9 10 20 23 25 27

3 5 6 8 9 11 20 28

3 6 7 8 11 19 28

2 7 12 19 29

2 12 18 29

1 13 18 30

1 13 17 30

0 14 17 31

0 14 15 15 16 16 31

Preface 15

In our file neighbor.data which you can take from ~edelman/summer94/friday we have encoded
information about neighbors and connections. You will see numbers such as

1 0 0 0 0 0

4 0 0 0 0 0

0 0 0 0

0

This contains information about the 0th rectangle. The first line says that it has a neighbor 1. The
4 means that the neighbor meets the rectangle on top. (1 would be the bottom, 6 would be the
lower right.) We starred out a few entries towards the bottom. Figure out what they should be.

In the actual code (solver.f), a few lines were question marked out for the message passing.
Figure out how the code works and fill in the appropriate lines. The program may be compiled
with the makefile.

