
Lecture 6

Parallel Machines

A parallel computer is a connected configuration of processors and memories. The choice space
available to a computer architect includes the network topology, the node processor, the address-
space organization, and the memory structure. These choices are based on the parallel computation
model, the current technology, and marketing decisions.

No matter what the pace of change, it is impossible to make intelligent decisions about parallel
computers right now without some knowledge of their architecture. For more advanced treatment of
computer architecture we recommend Kai Hwang’s Advanced Computer Architecture and Parallel

Computer Architecture by Gupta, Singh, and Culler.

One may gauge what architectures are important today by the Top500 Supercomputer1 list
published by Meuer, Strohmaier, Dongarra and Simon. The secret is to learn to read between the
lines. There are three kinds of machines on The November 2003 Top 500 list:

• Distributed Memory Multicomputers (MPPs)

• Constellation of Symmetric Multiprocessors (SMPs)

• Clusters (NOWs and Beowulf cluster)

Vector Supercomputers, Single Instruction Multiple Data (SIMD) Machines and SMPs are no
longer present on the list but used to be important in previous versions.

How can one simplify (and maybe grossly oversimplify) the current situation? Perhaps by
pointing out that the world’s fastest machines are mostly clusters. Perhaps it will be helpful to the
reader to list some of the most important machines first sorted by type, and then by highest rank
in the top 500 list. We did this in 1997 and also 2003.

1http://www.top500.org

1



2 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Top 500
Machine First Rank

(1996)

Distributed Memory

Hitachi/Tsukuba CP-PACS 1
Fujitsu NWT 2
Hitachi SR2201 3
Intel XP/S 4
Cray T3D 7
Fujitsu VPP500 8
IBM SP2 14
TMC CM-5 21
Hitachi S-3800 56
Intel Delta 120
Parsytec GC Power Plus 230
Meiko CS-2 438
IBM 9076 486
KSR2-80 491

Top 500
Machine First Rank

(1996)

SMP Arrays

SGI Power Challenge Array 95

SMP

SGI Origin 2000 211
Convex SPP1200 264
SGI Power Challenge 288
Digital AlphaServer 8400 296

Vector Machines

NEC SX 17
Cray YMP 54

SIMD Machines

TMC CM-200 196



Preface 3

Top 500
Machine First Rank

(2003)

Cluster

ASCI Q - HP AlphaServer
SC45 2

X - Selfmade Apple G5
Cluster 3

Tungsten - Dell PowerEdge
Cluster 4

Mpp2 - HP Integrity rx2600
Itanium2 Cluster 5

Lightning - Linux Networx
Opteron Cluster 6

MCR Linux Xeon Cluster 7
IBM/Quadrics xSeries

Xeon Cluster 10
PSC - HP AlphaServer

SC45 12
Legend DeepComp 6800

Itanium Cluster 14
CEA - HP AlphaServer

SC45 15
Aspen Systems Dual

Xeon Cluster 17
IBM xSeries Xeon

Cluster 22
HP Integrity

rx5670-4x256 25
Dell-Cray PowerEdge

1750 Cluster 26

Top 500
Machine First Rank

(2003)

Distributed Memory (MPPs)

NEC Earth-Simulator 1
IBM ASCI White 8
IBM Seaborg SP Power3 9
NCAR - IBM pSeries 690 Turbo 13
HPCx - IBM pSeries 690 Turbo 16
NAVOCEANO - IBM pSeries

690 Turbo 18
US Govt. Cray X1 19
ORNL - Cray X1 20
Cray Inc. Cray X1 21
ECMWF - IBM pSeries 690 Turbo 23
ECMWF - IBM pSeries 690 Turbo 24
Intel - ASCI Red 27
ORNL - IBM pSeries 690 Turbo 28
IBM Canada pSeries 690 Turbo 29

Canstellation of SMPs

Fujitsu PRIMEPOWER HPC2500 11
NEC SX-5/128M8 88
HP Integrity Superdome/HFabric 117
Sun Fire 15k/6800 Cluster 151

The trend is clear to anyone who looks at the list. Distributed memory machines are on the way
out and cluster computers are now the dominant force in supercomputers.

Distributed Memory Multicomputers:

Remembering that a computer is a processor and memory, really a processor with cache and
memory, it makes sense to call a set of such “computers” linked by a network a multicomputer.
Figure 6.1 shows 1) a basic computer which is just a processor and memory and also 2) a fancier
computer where the processor has cache, and there is auxiliary disk memory. To the right, we
picture 3) a three processor multicomputer. The line on the right is meant to indicate the network.

These machines are sometimes called distributed memory multiprocessors. We can further
distinguish between DMM’s based on how each processor addresses memory. We call this the
private/shared memory issue:

Private versus shared memory on distributed memory machines: It is easy
to see that the simplest architecture allows each processor to address only its own



4 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

�������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

P C M D

�������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	


�
�


�
�


�
�


�
�


�
�


�
�


�
�


������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������


�
�
�


�
�
�


�
�
�


�
�
�


�
�
�


�
�
�


�
�
�


�����
�����
�����
�����
�����
�����
�����

�������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����

P M1)

2)

3) P C M

P C M

P C M

Figure 6.1: 1) A computer 2) A fancier computer 3)A multicomputer

memory. When a processor wants to read data from another processor’s memory, the
owning processor must send the data over the network to the processor that wants it.
Such machines are said to have private memory. A close analog is that in my office, I
can easily find information that is located on my desk (my memory) but I have to make
a direct request via my telephone (ie., I must dial a phone number) to find information
that is not in my office. And, I have to hope that the other person is in his or her office,
waiting for the phone to ring. In other words, I need the co-operation of the other
active party (the person or processor) to be able to read or write information located
in another place (the office or memory).

The alternative is a machine in which every processor can directly address every in-
stance of memory. Such a machine is said to have a shared address space, and sometimes
informally shared memory, though the latter terminology is misleading as it may easily
be confused with machines where the memory is physically shared. On a shared address
space machine, each processor can load data from or store data into the memory of any
processor, without the active cooperation of that processor. When a processor requests
memory that is not local to it, a piece of hardware intervenes and fetches the data over
the network. Returning to the office analogy, it would be as if I asked to view some
information that happened to not be in my office, and some special assistant actually
dialed the phone number for me without my even knowing about it, and got a hold of
the special assistant in the other office, (and these special assistants never leave to take
a coffee break or do other work) who provided the information.

Most distributed memory machines have private addressing. One notable exception
is the Cray T3D and the Fujitsu VPP500 which have shared physical addresses.

Clusters (NOWs and Beowulf Cluster):

Clusters are built from independent computers integrated through an after-market network. The



Preface 5

idea of providing COTS (Commodity off the shelf) base systems to satisfy specific computational
requirements evolved as a market reaction to MPPs with the thought the cost might be cheaper.
Clusters were considered to have slower communications compared to the specialized machines but
they have caught up fast and now outperform most specialized machines.

NOWs stands for Network of Workstations. Any collection of workstations is likely to be
networked together: this is the cheapest way for many of us to work on parallel machines given
that the networks of workstations already exist where most of us work.

The first Beowulf cluster was built by Thomas Sterling and Don Becker at the Goddard Space
Flight Center in Greenbelt Maryland, which is a cluster computer consisting of 16 DX4 processors
connected by Ethernet. They named this machine Beowulf (a legendary Geatish warrior and hero
of the Old English poem Beowulf). Now people use “Beowulf cluster” to denote a cluster of PCs
or workstations interconnected by a private high-speed network, which is dedicated to running
high-performance computing tasks. Beowulf clusters usually run a free-software operating system
like Linux or FreeBSD, though windows Beowulfs exist.

Central Memory Symmetric Multiprocessors (SMPs) and Constellation of SMPs:

Notice that we have already used the word “shared” to refer to the shared address space possible
in in a distributed memory computer. Sometimes the memory hardware in a machine does not
obviously belong to any one processor. We then say the memory is central, though some authors
may use the word “shared.” Therefore, for us, the central/distributed distinction is one of system
architecture, while the shared/private distinction mentioned already in the distributed context
refers to addressing.

“Central” memory contrasted with distributed memory: We will view the
physical memory architecture as distributed if the memory is packaged with the pro-
cessors in such a way that some parts of the memory are substantially “farther” (in
the sense of lower bandwidth or greater access latency) from a processor than other
parts. If all the memory is nearly equally expensive to access, the system has central
memory. The vector supercomputers are genuine central memory machines. A network
of workstations has distributed memory.

Microprocessor machines known as symmetric multiprocessors (SMP) are becoming typical now
as mid-sized compute servers; this seems certain to continue to be an important machine design.
On these machines each processor has its own cache while the main memory is central. There is
no one “front-end” or “master” processor, so that every processor looks like every other processor.
This is the “symmetry.” To be precise, the symmetry is that every processor has equal access to
the operating system. This means, for example, that each processor can independently prompt the
user for input, or read a file, or see what the mouse is doing.

The microprocessors in an SMP themselves have caches built right onto the chips, so these
caches act like distributed, low-latency, high-bandwidth memories, giving the system many of the
important performance characteristics of distributed memory. Therefore if one insists on being
precise, it is not all of the memory that is central, merely the main memory. Such systems are said
to have non-uniform memory access (NUMA).

A big research issue for shared memory machines is the cache coherence problem. All fast
processors today have caches. Suppose the cache can contain a copy of any memory location in
the machine. Since the caches are distributed, it is possible that P2 can overwrite the value of x
in P2’s own cache and main memory, while P1 might not see this new updated value if P1 only



6 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	


�
�
�
�


�
�
�
�


�
�
�
�


�
�
�
�


�
�
�
�


P P

P P
C C

CC

M

B

BB

B

Figure 6.2: A four processor SMP (B denotes the bus between the central memory and the proces-
sor’s cache

looks at its own cache. Coherent caching means that when the write to x occurs, any cached copy
of x will be tracked down by the hardware and invalidated – i.e. the copies are thrown out of their
caches. Any read of x that occurs later will have to go back to its home memory location to get
its new value. Maintenance of cache coherence is expensive for scalable shared memory machines.
Today, only the HP Convex machine has scalable, cache coherent, shared memory. Other vendors
of scalable, shared memory systems (Kendall Square Research, Evans and Sutherland, BBN) have
gone out of the business. Another, Cray, makes a machine (the Cray T3E) in which the caches can
only keep copies of local memory locations.

SMPs are often thought of as not scalable (performance peaks at a fairly small number of pro-
cessors), because as you add processors, you quickly saturate the bus connecting the memory to
the processors.

Whenever anybody has a collection of machines, it is always natural to try to hook them up
together. Therefore any arbitrary collection of computers can become one big distributed com-
puter. When all the nodes are the same, we say that we have a homogeneous arrangement. It has
recently become popular to form high speed connections between SMPs, known as Constellations

of SMPs or SMP arrays. Sometimes the nodes have different architectures creating a heterogeneous
situation. Under these circumstances, it is sometimes necessary to worry about the explicit format
of data as it is passed from machine to machine.

SIMD machines:
In the late 1980’s, there were debates over SIMD versus MIMD. (Either pronounced as SIM-
dee/MIM-dee or by reading the letters es-eye-em-dee/em-eye-em-dee.) These two acronyms coined
by Flynn in his classification of machines refer to Single Instruction Multiple Data and Mul-
tiple Instruction Multiple Data. The second two letters, “MD” for multiple data, refer to the
ability to work on more than one operand at a time. The “SI” or “MI” refer to the ability of a
processor to issue instructions of its own. Most current machines are MIMD machines. They are



Preface 7

built from microprocessors that are designed to issue instructions on their own. One might say that
each processor has a brain of its own and can proceed to compute anything it likes independent of
what the other processors are doing. On a SIMD machine, every processor is executing the same
instruction, an add say, but it is executing on different data.

SIMD machines need not be as rigid as they sound. For example, each processor had the ability
to not store the result of an operation. This was called em context. If the contest was false, the
result was not stored, and the processor appeared to not execute that instruction. Also the CM-2
had the ability to do indirect addressing, meaning that the physical address used by a processor to
load a value for an add, say, need not be constant over the processors.

The most important SIMD machines were the Connection Machines 1 and 2 produced by
Thinking Machines Corporation, and the MasPar MP-1 and 2. The SIMD market received a
serious blow in 1992, when TMC announced that the CM-5 would be a MIMD machine.

Now the debates are over. MIMD has won. The prevailing theory is that because of the
tremendous investment by the personal computer industry in commodity microprocessors, it will
be impossible to stay on the same steep curve of improving performance using any other proces-
sor technology. “No one will survive the attack of the killer micros!” said Eugene Brooks of the
Lawrence Livermore National Lab. He was right. The supercomputing market does not seem to
be large enough to allow vendors to build their own custom processors. And it is not realistic
or profitable to build an SIMD machine out of these microprocessors. Furthermore, MIMD is
more flexible than SIMD; there seem to be no big enough market niches to support even a single
significant vendor of SIMD machines.

A close look at the SIMD argument:
In some respects, SIMD machines are faster from the communications viewpoint. They
can communicate with minimal latency and very high bandwidth because the processors
are always in synch. The Maspar was able to do a circular shift of a distributed array,
or a broadcast, in less time than it took to do a floating point addition. So far as we
are aware, no MIMD machine in 1996 has a latency as small as the 24 µsec overhead
required for one hop in the 1988 CM-2 or the 8 µsec latency on the Maspar MP-2.

Admitting that certain applications are more suited to SIMD than others, we were
among many who thought that SIMD machines ought to be cheaper to produce in that
one need not devote so much chip real estate to the ability to issue instructions. One
would not have to replicate the program in every machine’s memory. And communi-
cation would be more efficient in SIMD machines. Pushing this theory, the potentially
fastest machines (measured in terms of raw performance if not total flexibility) should
be SIMD machines. In its day, the MP-2 was the world’s most cost-effective machine,
as measured by the NAS Parallel Benchmarks. These advantages, however, do not seem
to have been enough to overcome the relentless, amazing, and wonderful performance
gains of the “killer micros”.

Continuing with the Flynn classification (for historical purposes) Single Instruction Single
Data or SISD denotes the sequential (or Von Neumann) machines that are on most of our desktops
and in most of our living rooms. (Though most architectures show some amount of parallelism at
some level or another.) Finally, there is Multiple Instruction Single Data or MISD, a class
which seems to be without any extant member although some have tried to fit systolic arrays into
this ill-fitting suit.

There have also been hybrids; the PASM Project (at Purdue University) has investigated the
problem of running MIMD applications on SIMD hardware! There is, of course, some performance



8 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

penalty.

Vector Supercomputers:

A vector computer today is a central, shared memory MIMD machine in which every proces-
sor has some pipelined arithmetic units and has vector instructions in its repertoire. A vector
instruction is something like “add the 64 elements of vector register 1 to the 64 elements of vec-
tor register 2”, or “load the 64 elements of vector register 1 from the 64 memory locations at
addresses x, x + 10, x + 20, . . . , x + 630.” Vector instructions have two advantages: fewer instruc-
tions fetched, decoded, and issued (since one instruction accomplishes a lot of computation), and
predictable memory accesses that can be optimized for high memory bandwidth. Clearly, a single
vector processor, because it performs identical operations in a vector instruction, has some features
in common with SIMD machines. If the vector registers have p words each, then a vector processor
may be viewed as an SIMD machine with shared, central memory, having p processors.

Hardware Technologies and Supercomputing:

Vector supercomputes have very fancy integrated circuit technology (bipolar ECL logic, fast but
power hungry) in the processor and the memory, giving very high performance compared with other
processor technologies; however, that gap has now eroded to the point that for most applications,
fast microprocessors are within a factor of two in performance. Vector supercomputer processors
are expensive and require unusual cooling technologies. Machines built of gallium arsenide, or using
Josephson junction technology have also been tried, and none has been able to compete success-
fully with the silicon, CMOS (complementary, metal-oxide semiconductor) technology used in the
PC and workstation microprocessors. Thus, from 1975 through the late 1980s, supercomputers
were machines that derived their speed from uniprocessor performance, gained through the use of
special hardware technologies; now supercomputer technology is the same as PC technology, and
parallelism has become the route to performance.

6.0.1 More on private versus shared addressing

Both forms of addressing lead to difficulties for the programmer. In a shared address system,
the programmer must insure that any two processors that access the same memory location do
so in the correct order: for example, processor one should not load a value from location N until
processor zero has stored the appropriate value there (this is called a “true” or “flow” dependence);
in another situation, it may be necessary that processor one not store a new value into location
N before processor zero loads the old value (this is an “anti” dependence); finally, if multiple
processors write to location N, its final value is determined by the last writer, so the order in
which they write is significant (this is called “output” dependence). The fourth possibility, a load
followed by another load, is called an “input” dependence, and can generally be ignored. Thus, the
programmer can get incorrect code do to “data races”. Also, performance bugs due to too many
accesses to the same location (the memory bank that holds a given location becomes the sequential
bottleneck) are common. 2

The big problem created by private memory is that the programmer has to distribute the data.
“Where’s the matrix?” becomes a key issue in building a LINPACK style library for private memory

2It is an important problem of the “PRAM” model used in the theory of parallel algorithms that it does not
capture this kind of performance bug, and also does not account for communication in NUMA machines.



Preface 9

machines. And communication cost, whenever there is NUMA, is also a critical issue. It has been
said that the three most important issues in parallel algorithms are “locality, locality, and locality”.3

One factor that complicates the discussion is that a layer of software, at the operating system
level or just above it, can provide virtual shared addressing on a private address machine by using
interrupts to get the help of an owning processor when a remote processor wants to load or store
data to its memory. A different piece of software can also segregate the shared address space of a
machine into chunks, one per processor, and confine all loads and stores by a processor to its own
chunk, while using private address space mechanisms like message passing to access data in other
chunks. (As you can imagine, hybrid machines have been built, with some amount of shared and
private memory.)

6.0.2 Programming Model

The programming model used may seem to be natural for one style of machine; data parallel
programming seems to be a SIMD shared memory style, and message passing seems to favor
distributed memory MIMD.

Nevertheless, it is quite feasible to implement data parallelism on distributed memory MIMD
machines. For example, on the Thinking Machines CM-5, a user can program in CM-Fortran an
array data parallel language, or program in node programs such as C and Fortran with message
passing system calls, in the style of MIMD computing. We will discuss the pros and cons of SIMD
and MIMD models in the next section when we discuss parallel languages and programming models.

6.0.3 Machine Topology

The two things processors need to do in parallel machines that they do not do when all alone
are communication (with other processors) and coordination (again with other processors). Com-
munication is obviously needed: one computes a number that the other requires, for example.
Coordination is important for sharing a common pool of resources, whether they are hardware
units, files, or a pool of work to be performed. The usual mechanisms for coordination, moreover,
involve communication.

Parallel machines differ in their underlying hardware for supporting message passing and data
routing.

In a shared memory parallel machine, communication between processors is achieved by access
to common memory locations. Access to the common memory is supported by a switch network
that connects the processors and memory modules. The set of proposed switch network for shared
parallel machines includes crossbars and multistage networks such as the butterfly network. One
can also connect processors and memory modules by a bus, and this is done when the number of
processors is limited to ten or twenty.

An interconnection network is normally used to connect the nodes of a multicomputer as well.
Again, the the network topology varies from one machine to another. Due to technical limitations,
most commercially used topologies are of small node degree. Commonly used network topologies
include (not exclusively) linear arrays, ring, hierarchical rings, two or three dimension grids or tori,
hypercubes, fat trees.

The performance and scalability of a parallel machine in turn depend on the network topology.
For example, a two dimensional grid of p nodes has diameter

√
p, on the other hand, the diameter

of a hypercube or fat tree of p nodes is log p. This implies that the number of physical steps to

3For those too young to have suffered through real estate transactions, the old adage in that business is that the
three most important factors in determining the value of a property are “location, location, and location”.



10 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

send a message from a processor to its most distant processor is
√

p and log p, respectively, for
2D grid and hypercube of p processors. The node degree of a 2D grid is 4, while the degree of a
hypercube is log p. Another important criterion for the performance of a network topology is its
bisection bandwidth, which is the minimum communication capacity of a set of links whose removal
partitions the network into two equal halves. Assuming unit capacity of each direct link, a 2D and
3D grid of p nodes has bisection bandwidth

√
p and p2/3 respectively, while a hypercube of p nodes

has bisection bandwidth Θ(p/ log p). (See FTL page 394)

There is an obvious cost / performance trade-off to make in choosing machine topology. A
hypercube is much more expensive to build than a two dimensional grid of the same size. An
important study done by Bill Dally at Caltech showed that for randomly generated message traffic,
a grid could perform better and be cheaper to build. Dally assumed that the number of data
signals per processor was fixed, and could be organized into either four “wide” channels in a grid
topology or log n “narrow” channels (in the first hypercubes, the data channels were bit-serial) in
a hypercube. The grid won, because too the average utilization of the hypercube channels was
too low: the wires, probably the most critical resource in the parallel machine, were sitting idle.
Furthermore, the work on routing technology at Caltech and elsewhere in the mid 80’s resulted in a
family of hardware routers that delivered messages with very low latency even though the length of
the path involved many “hops” through the machines. For the earliest multicomputers used “store
and forward” networks, in which a message sent from A through B to C was copied into and out
of the memory of the intermediate node B (and any others on the path): this causes very large
latencies that grew in proportion to the number of hops. Later routers, including those used in
todays networks, have a “virtual circuit” capability that avoids this copying and results in small
latencies.

Does topology make any real difference to the performance of parallel machines in practice?

Some may say “yes” and some may say “no”. Due to the small size (less than 512 nodes) of
most parallel machine configurations and large software overhead, it is often hard to measure the
performance of interconnection topologies at the user level.

6.0.4 Homogeneous and heterogeneous machines

Another example of cost / performance trade-off is the choice between tightly coupled parallel
machines and workstation clusters, workstations that are connected by fast switches or ATMs. The
networking technology enables us to connect heterogeneous machines (including supercomputers)
together for better utilization. Workstation clusters may have better cost/efficient trade-offs and
are becoming a big market challenger to “main-frame” supercomputers.

A parallel machine can be homogeneous or heterogeneous. A homogeneous parallel machine uses
identical node processors. Almost all tightly coupled supercomputers are homogeneous. Worksta-
tion clusters may often be heterogeneous. The Cray T3D is in some sense a heterogeneous parallel
system which contains a vector parallel computer C90 as the front end and the massively parallel
section of T3D. (The necessity of buying the front-end was evidently not a marketing plus: the
T3E does not need one.) A future parallel system may contains a cluster of machines of various
computation power from workstations to tightly coupled parallel machines. The scheduling prob-
lem will inevitably be much harder on a heterogeneous system because of the different speed and
memory capacity of its node processors.

More than 1000 so called supercomputers have been installed worldwide. In US, parallel ma-
chines have been installed and used at national research labs (Los Almos National Laboratory,
Sandia National Labs, Oak Ridge National Laboratory, Lawrence Livermore National Laboratory,
NASA Ames Research Center, US Naval Research Laboratory, DOE/Battis Atomic Power Labora-



Preface 11

tory, etc) supercomputing centers (Minnesota Supercomputer Center, Urbana-Champaign NCSA,
Pittsburgh Supercomputing Center, San Diego Supercomputer Center, etc) US Government, and
commercial companies (Ford Motor Company, Mobil, Amoco) and major universities. Machines
from different supercomputing companies look different, are priced differently, and are named dif-
ferently. Here are the names and birthplaces of some of them.

• Cray T3E (MIMD, distributed memory, 3D torus, uses Digital Alpha microprocessors), C90
(vector), Cray YMP, from Cray Research, Eagan, Minnesota.

• Thinking Machine CM-2 (SIMD, distributed memory, almost a hypercube ) and CM-5 (SIMD
and MIMD, distributed memory, Sparc processors with added vector units, fat tree) from
Thinking Machines Corporation, Cambridge, Massachusetts.

• Intel Delta, Intel Paragon (mesh structure, distributed memory, MIMD), from Intel Corpo-
rations, Beaverton, Oregon. Based on Intel i860 RISC, but new machines based on the P6.
Recently sold world’s largest computer (over 6,000 P6 processors) to the US Dept of Energy
for use in nuclear weapons stockpile simulations.

• IBM SP-1, SP2, (clusters, distributed memory, MIMD, based on IBM RS/6000 processor),
from IBM, Kingston, New York.

• MasPar, MP-2 (SIMD, small enough to sit next to a desk), by MasPar, Santa Clara, Califor-
nia.

• KSR-2 (global addressable memory, hierarchical rings, SIMD and MIMD) by Kendall Square,
Waltham, Massachusetts. Now out of the business.

• Fujitsu VPX200 (multi-processor pipeline), by Fujitsu, Japan.

• NEC SX-4 (multi-processor vector, shared and distributed memory), by NEC, Japan.

• Tera MTA (MPP vector, shared memory, multithreads, 3D torus), by Tera Computer Com-
pany, Seattle, Washington. A novel architecture which uses the ability to make very fast
context switches between threads to hide latency of access to the memory.

• Meiko CS-2HA (shared memory, multistage switch network, local I/O device), by Meiko
Concord, Massachusetts and Bristol UK.

• Cray-3 (gallium arsenide integrated circuits, multiprocessor, vector) by Cray Computer Cor-
poration, Colorado Spring, Colorado. Now out of the business.

6.0.5 Distributed Computing on the Internet and Akamai Network

Examples of distributed computing on the internet:

• seti@home: “a scientific experiment that uses Internet-connected computers to downloads and
analyzes radio telescope data”. When we input this item, its performance is 26.73 Teraflops
per second.

• Distributed.net: to use the idle processing time of its thousands member computers to solve
computationally intensive problems. Its computing power now is equivalent to that of “more
than 160000 PII 266MHz computers”.



12 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

• Parabon: recycle computer’s idle time for bioinformatic computations.

• Google Compute: Runs as part of the Google Toolbar within a user’s browser. Detects spare
cycles on the machine and puts them to use solving scientific problems selected by Google.

Akamai Network consists of thousands servers spread globally that cache web pages and route
traffic away from congested areas. This idea was originated by Tom Leighton and Danny Lewin at
MIT.


