
Lecture 5

Sparse Linear Algebra

The solution of a linear system Ax = b is one of the most important computational problems in
scientific computing. As we shown in the previous section, these linear systems are often derived
from a set of differential equations, by either finite difference or finite element formulation over a
discretized mesh.

The matrix A of a discretized problem is usually very sparse, namely it has enough zeros that can
be taken advantage of algorithmically. Sparse matrices can be divided into two classes: structured

sparse matrices and unstructured sparse matrices. A structured matrix is usually generated from
a structured regular grid and an unstructured matrix is usually generated from a non-uniform,
unstructured grid. Therefore, sparse techniques are designed in the simplest case for structured
sparse matrices and in the general case for unstructured matrices.

5.1 Cyclic Reduction for Structured Sparse Linear Systems

The simplest structured linear system is perhaps the tridiagonal system of linear equations Ax = b
where A is symmetric and positive definite and of form

A =

b1 c1

c1 b2 c2
. . .

. . .
. . .

cn−2 bn−1 cn−1

cn−1 bn

For example, the finite difference formulation of the one dimensional model problems

−u′′(x) + σu(x) = f(x), 0 < x < 1, σ ≥ 0 (5.1)

subject to the boundary conditions u(0) = u(1) = 0, on a uniform discretization of spacing h yields
of a triangular linear system of n = 1/h variables, where bi = 2+σh2 and ci = −1 for all 1 ≤ i ≤ n.

Sequentially, we can solve a triangular linear system Ax = b by factor A into A = LDLT , where
D is a diagonal matrix with diagonal (d1, d2, ..., dn) and L is of form

L =

1 0
e1 1 0

. . .
. . .

. . .

en−1 1

.

The factorization can be computed by the following simple algorithm.

1

2 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Algorithm Sequential Tridiagonal Solver

1. d1 = b1

2. e=c1/d1

3. for i = 2 : n

(a) d1 = bi − ei−1ci−1

(b) if i < n then ei = ci/di

The number float point operations is 3n upto a additive constant. With such factorization, we
can then solve the tridiagonal linear system in additional 5n float point operations. However, this
method is very reminiscent to the naive sequential algorithm for the prefix sum whose computation
graph has a critical path of length O(n). The cyclic reduction, developed by Golub and Hockney
[?], is very similar to the parallel prefix algorithm presented in Section ?? and it reduces the length
of dependency in the computational graph to the smallest possible.

The basic idea of the cyclic reduction is to first eliminate the odd numbered variables to obtain
a tridiagonal linear system of dn/2e equations. Then we solve the smaller linear system recursively.
Note that each variable appears in three equations. The elimination of the odd numbered variables
gives a tridiagonal system over the even numbered variables as following:

c′2i−2x2i−2 + b′2ix2i + c′2ix2i+2 = f ′
2i,

for all 2 ≤ i ≤ n/2, where

c′2i−2 = −(c2i−2c2i−1/b2i−1)

b′2i = (b2i − c2
2i−1/b2i−1 − c22i/b2i+1)

c′2i = c2ic2i+1/b2i+1

f ′
2i = f2i − c2i−1f2i−1/b2i−1 − c2if2i+1/b2i+1

Recursively solving this smaller linear tridiagonal system, we obtain the value of x2i for all
i = 1, ..., n/2. We can then compute the value of x2i−1 by the simple equation:

x2i−1 = (f2i−1 − c2i−2x2i−2 − c2i−1x2i)/b2i−1.

By simple calculation, we can show that the total number of float point operations is equal to
16n upto an additive constant. So the amount of total work is doubled compare with the sequential
algorithm discussed. But the length of the critical path is reduced to O(log n). It is worthwhile to
point out the the total work of the parallel prefix sum algorithm also double that of the sequential
algorithm. Parallel computing is about the trade-off of parallel time and the total work. The
discussion show that if we have n processors, then we can solve a tridiagonal linear system in
O(log n) time.

When the number of processor p is much less than n, similar to prefix sum, we hybrid the cyclic
reduction with the sequential factorization algorithm. We can show that the parallel float point
operations is bounded by 16n(n + log n)/p and the number of round of communication is bounded
by O(log p). The communication pattern is the nearest neighbor.

Cyclic Reduction has been generalized to two dimensional finite difference systems where the
matrix is a block tridiagonal matrix.

Preface 3

5.2 Sparse Direct Methods

Direct methods for solving sparse linear systems are important because of their generality and
robustness. For linear systems arising in certain applications, such as linear programming and some
structural engineering applications, they are the only feasible methods for numerical factorization.

5.2.1 LU Decomposition and Gaussian Elimination

The basis of direct methods for linear system is Gaussian Elimination, a process where we zero out
certain entry of the original matrix in a systematically way. Assume we want to solve Ax = b where
A is a sparse n × n symmetric positive definite matrix. The basic idea of the direct method is to
factor A into the product of triangular matrices A = LLT . Such a procedure is called Cholesky

factorization.
The first step of the Cholesky factorization is given by the following matrix fractorization:

A =

(

d vT

v C

)

=

(√
d 0

v/
√

d I

)(

1 0
0 C − (vvT)/d

)(√
d vT /

√
d

0 I

)

where v is n− 1× 1 and C is n− 1×n− 1. Note that d is positive since A is positive definite. The
term C − vvt

d is the Schur complement of A. This step is called elimination and the element d is
the pivot. The above decomposition is now carried out on the Schur complement recursively. We
therefore have the following algorithm for the Cholesky decomposition.

For k = 1, 2, . . . , n
a(k, k) =

√

a(k, k)

a(k + 1 : n, k) = a(k+1:n,k)
a(k,k)

a(k + 1 : n, k + 1 : n) = a(k + 1 : n, k + 1 : n) − a(k + 1 : n, k)T a(k + 1 : n, k)
end

The entries on and below the diagonal of the resulting matrix are the entries of L. The main
step in the algorithm is a rank 1 update to an n − 1 × n − 1 block.

Notice that some fill-in may occur when we carry out the decomposition. i.e., L may be
significantly less sparse than A. An important problem in direct solution to sparse linear system is
to find a “good” ordering of the rows and columns of the matrix to reduce the amount of fill.

As we showed in the previous section, the matrix of the linear system generated by the finite
element or finite difference formulation is associated with the graph given by the mesh. In fact,
the nonzero structure of each matrix A can be represented by a graph, G(A), where the rows are
represented by a vertex and every nonzero element by an edge. An example of a sparse matrix
and its corresponding graph is given in Figure 5.1. Note that nonzero entries are marked with a
symbol, whereas zero entries are not shown.

The fill-in resulting from Cholesky factorization is also illustrated in Figure 5.1. The new graph
G+(A) can be computed by looping over the nodes j, in order of the row operations, and adding
edges between j’s higher-numbered neighbors.

In the context of parallel computation, an important parameter the height of elimination tree,
which is the number of parallel elimination steps need to factor with an unlimited number of
processors. The elimination tree defined as follows from the fill-in calculation which was described
above. Let j > k. Define j >L k if ljk 6= 0 where ljk is the (j, k) entry of L, the result of the
decomposition. Let the parent of k, p(k) =min{j : j >L k}. This defines a tree since if β >L α,
γ >L α and γ > β then γ >L β. The elimination tree corresponding to our matrix is shown in
Figure 5.2.

4 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

1 3 7

8 6

4 10

9 5 2

1 3 7

8 6

4 10

9 5 2

FILL

G(A) G(A)
+

Figure 5.1: Graphical Representation of Fill-in

1 3 7

8 6

4 10

9 5 2

10

4
9

5

8
2

6
7 3

1

G(A) T(A)
+

Figure 5.2: The Elimination Tree

Preface 5

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 300

spy(A)

Figure 5.3: Sparsity Structure of Semi-Random Symmetric Matrix

The order of elimination determines both fill and elimination tree height. Unfortunately, but
inevitably, finding the best ordering is NP-complete. Heuristics are used to reduce fill-in. The
following lists some commonly used ones.

• Ordering by minimum degree (this is SYMMMD in Matlab)

• nested dissection

• Cuthill-McKee ordering.

• reverse Cuthill-McKee (SYMRCM)

• ordering by number of non-zeros (COLPERM or COLMMD)

These ordering heuristics can be investigated in Matlab on various sparse matrices. The simplest
way to obtain a random sparse matrix is to use the command A=sprand(n,m,f), where n and m
denote the size of the matrix, and f is the fraction of nonzero elements. However, these matrices
are not based on any physical system, and hence may not illustrate the effectiveness of an ordering
scheme on a real world problem. An alternative is to use a database of sparse matrices, one of
which is available with the command/package ufget.

Once we have a sparse matrix, we can view it’s sparsity structure with the command spy(A).
An example with a randomly generated symmetric sparse matrix is given in Figure 5.3.

We now carry out Cholesky factorization of A using no ordering, and using SYMMMD. The
sparsity structures of the resulting triangular matrices are given in Figure 5.4. As shown, using a
heuristic-based ordering scheme results in significantly less fill in. This effect is usually more pro-
nounced when the matrix arises from a physical problem and hence has some associated structure.

We now examine an ordering method called nested dissection, which uses vertex separators in
a divide-and-conquer node ordering for sparse Gaussian elimination. Nested dissection [37, 38, 59]
was originally a sequential algorithm, pivoting on a single element at a time, but it is an attractive

6 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 255

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 411

Chol: No Ordering Chol: SYMMMD

Figure 5.4: Sparsity Structure After Cholesky Factorization

parallel ordering as well because it produces blocks of pivots that can be eliminated independently
in parallel [9, 29, 40, 61, 74].

Consider a regular finite difference grid. By dissecting the graph along the center lines (enclosed
in dotted curves), the graph is split into four independent graphs, each of which can be solved in
parallel.

The connections are included only at the end of the computation in an analogous way to domain
decomposition discussed in earlier lectures. Figure 5.6 shows how a single domain can be split up
into two roughly equal sized domains A and B which are independent and a smaller domain C
that contains the connectivity.

One can now recursively order A and B, before finally proceeding to C. More generally, begin
by recursively ordering at the leaf level and then continue up the tree. The question now arises as
to how much fill is generated in this process. A recursion formula for the fill F generated for such

Figure 5.5: Nested Dissection

Preface 7

A B
C

Figure 5.6: Vertex Separators

a 2-dimension nested dissection algorithm is readily derived.

F (n) = 4F (
n

2
) +

(2
√

n)2

2
(5.2)

This yields upon solution

F (n) = 2n log(n) (5.3)

In an analogous manner, the elimination tree height is given by:

H(n) = H(
n

2
) + 2

√
n (5.4)

H(n) = const ×√
n (5.5)

Nested dissection can be generalized to three dimensional regular grid or other classes of graphs
that have small separators. We will come back to this point in the section of graph partitioning.

5.2.2 Parallel Factorization: the Multifrontal Algorithm

Nested dissection and other heuristics give the ordering. To factor in parallel, we need not only
find a good ordering in parallel, but also to perform the elimination in parallel. To achieve better
parallelism and scalability in elimination, a popular approach is to modify the algorithm so that
we are performing a rank k update to an n− k × n− k block. The basic step will now be given by

A =

(

D V T

V C

)

=

(

LD 0

V L−T
D I

)(

I 0
0 C − V D−1V T

)(

LT
D L−1

D V T

0 I

)

where C is n− k ×n− k, V is n− k × k and D = LDLT
D is k × k. D can be written in this way

since A is positive definite. Note that V D−1V T = (V L−T
D)(L−1

D V T).

The elimination tree shows where there is parallelism since we can “go up the separate branches
in parallel.” i.e. We can update a column of the matrix using only the columns below it in the

8 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

elimination tree. This leads to the multifrontal algorithm. The sequential version of the algorithm
is given below. For every column j there is a block Ūj (which is equivalent to V D−1V T).

Ūj = −
∑

k

ljk
li1k
...

lirk

(ljk li1k . . . lirk)

where the sum is taken over all descendants of j in the elimination tree. j, i1, i2, . . . , ir are the
indices of the non-zeros in column j of the Cholesky factor.

For j = 1, 2, . . . , n. Let j, i1, i2, . . . , ir be the indices of the non-zeros in column j of L. Let
c1, . . . , cs be the children of j in the elimination tree. Let Ū = Uc1 l . . . l Ucs

where the Ui’s were
defined in a previous step of the algorithm. l is the extend-add operator which is best explained
by example. Let

R =

(

5 8

5 p q
8 u v

)

, S =

(

5 9

5 w x
9 y z

)

(The rows of R correspond to rows 5 and 8 of the original matrix etc.) Then

R l S =

5 8 9

5 p + w q x
8 u v 0
9 y 0 z

Define

Fj =

ajj . . . ajir
...

. . .

airj . . . airir

l Ū

(This corresponds to C − V D−1V T)
Now factor Fj

ljj 0 . . . 0
li1j
... I

lirj

1 0 . . . 0
0
... Uj

0

ljj li1j . . . lirj

0
... I
0

(Note that Uj has now been defined.)
We can use various BLAS kernels to carry out this algorithm. Recently, Kumar and Karypis

have shown that direct solver can be parallelized efficiently. They have designed a parallel algorithm
for factorization of sparse matrices that is more scalable than any other known algorithm for this
problem. They have shown that our parallel Cholesky factorization algorithm is asymptotically
as scalable as any parallel formulation of dense matrix factorization on both mesh and hypercube
architectures. Furthermore, their algorithm is equally scalable for sparse matrices arising from two-
and three-dimensional finite element problems.

They have also implemented and experimentally evaluated the algorithm on a 1024-processor
nCUBE 2 parallel computer and a 1024-processor Cray T3D on a variety of problems. In structural
engineering problems (Boeing-Harwell set) and matrices arising in linear programming (NETLIB

Preface 9

set), the preliminary implementation is able to achieve 14 to 20 GFlops on a 1024-processor Cray
T3D.

In its current form, the algorithm is applicable only to Cholesky factorization of sparse sym-
metric positive definite (SPD) matrices. SPD systems occur frequently in scientific applications
and are the most benign in terms of ease of solution by both direct and iterative methods. How-
ever, there are many applications that involve solving large sparse linear systems which are not
SPD. An efficient parallel algorithm for a direct solution to non-SPD sparse linear systems will be
extremely valuable because the theory of iterative methods is far less developed for general sparse
linear systems than it is for SPD systems.

5.3 Basic Iterative Methods

These methods will focus on the solution to the linear system Ax = b where A ∈ Rn×n and
x, b ∈ Rn, although the theory is equally valid for systems with complex elements.

The basic outline of the iterative methods is as follows: Choose some initial guess, xo, for the
solution vector. Generate a series of solution vectors, {x1, x2, . . . , xk}, through an iterative process
taking advantage of previous solution vectors.

Define x∗ as the true (optimal) solution vector. Each iterative solution vector is chosen such
that the absolute error, ei = ‖x∗ − xi‖, is decreasing with each iteration for some defined norm.
Define also the residual error, ri = ‖b − Axi‖, at each iteration. These error quantities are clearly
related by a simple transformation through A.

ri = b − Axi = Ax∗ − Axi = Aei

5.3.1 SuperLU-dist

SuperLU-dist is an iterative and approximate method for solving Ax = b. This simple algorithm
eliminates the need for pivoting. The elimination of pivoting enhances parallel implementations due
to the high communications overhead that pivoting imposes. The basic SuperLU-dist algorithm is
as follows:

Algorithm: SuperLU-dist

1. r = b − A ∗ x

2. backerr = maxi(
ri

(|A|∗|x|+|b|)i
)

3. if (backerr < ε) or (backerr > lasterr
2) then stop

4. solve: L ∗ U ∗ dx = r

5. x = x + dx

6. lasterr = backerr

7. loop to step 1

In this algorithm, x, L, and U are approximate while r is exact. This procedure usually converges
to a reasonable solution after only 0-3 iterations and the error is on the order of 10−n after n
iterations.

10 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

5.3.2 Jacobi Method

Perform the matrix decomposition A = D − L − U where D is some diagonal matrix, L is some
strictly lower triangular matrix and U is some strictly upper triangular matrix.

Any solution satisfying Ax = b is also a solution satisfying Dx = (L + U)x + b. This presents
a straightforward iteration scheme with small computation cost at each iteration. Solving for the
solution vector on the right-hand side involves inversion of a diagonal matrix. Assuming this inverse
exists, the following iterative method may be used.

xi = D−1 (L + U) xi−1 + D−1b

This method presents some nice computational features. The inverse term involves only the
diagonal matrix, D. The computational cost of computing this inverse is minimal. Additionally,
this may be carried out easily in parallel since each entry in the inverse does not depend on any
other entry.

5.3.3 Gauss-Seidel Method

This method is similar to Jacobi Method in that any solution satisfying Ax = b is now a solution
satisfying (D − L)x = Ub for the A = D − L − U decomposition. Assuming an inverse exists, the
following iterative method may be used.

xi = (D − L)−1Uxi−1 + (D − L)−1

This method is often stable in practice but is less easy to parallelize. The inverse term is now
a lower triangular matrix which presents a bottleneck for parallel operations.

This method presents some practical improvements over the Jacobi method. Consider the
computation of the jth element of the solution vector xi at the ith iteration. The lower triangular
nature of the inverse term demonstrates only the information of the (j + 1)th element through
the nth elements of the previous iteration solution vector xi−1 are used. These elements contain
information not available when the jth element of xi−1 was computed. In essence, this method
updates using only the most recent information.

5.3.4 Splitting Matrix Method

The previous methods are specialized cases of Splitting Matrix algorithms. These algorithms utilize
a decomposition A = M−N for solving the linear system Ax = b. The following iterative procedure
is used to compute the solution vector at the ith iteration.

Mxi = Nxi−1 + b

Consider the computational tradeoffs when choosing the decomposition.

• cost of computing M−1

• stability and convergence rate

It is interesting the analyze convergence properties of these methods. Consider the definitions
of absolute error, ei = x∗ − xi, and residual error, ri = Axi − b. An iteration using the above
algorithm yields the following.

Preface 11

x1 = M−1Nx0 + M−1b
= M−1(M − A)x0 + M−1b
= x0 + M−1r0

A similar form results from considering the absolute error.

x∗ = x0 + e0

= x0 + A−1r0

This shows that the convergence of the algorithm is in some way improved if the M−1 term
approximates A−1 with some accuracy. Consider the amount of change in the absolute error after
this iteration.

e1 = A−1r0 − M−1r0

= e0 − M−1Ae0

= M−1Ne0

Evaluating this change for a general iteration shows the error propagation.

ei =
(

M−1N
)i

e0

This relationship shows a bound on the error convergence. The largest eigenvalue, or spectral
eigenvalue, of the matrix M−1N determines the rate of convergence of these methods. This analysis
is similar to the solution of a general difference equation of the form xk = Axk−1. In either case,
the spectral radius of the matrix term must be less than 1 to ensure stability. The method will
converge to 0 faster if all the eigenvalue are clustered near the origin.

5.3.5 Weighted Splitting Matrix Method

The splitting matrix algorithm may be modified by including some scalar weighting term. This
scalar may be likened to the free scalar parameter used in practical implementations of Newton’s
method and Steepest Descent algorithms for optimization programming. Choose some scalar, w,
such that 0 < w < 1, for the following iteration.

xi = (1 − w)x0 + w
(

x0 + M−1v0
)

= x0 + wM−1v0

5.4 Red-Black Ordering for parallel Implementation

The concept of ordering seeks to separate the nodes of a given domain into subdomains. Red-black
ordering is a straightforward way to achieve this. The basic concept is to alternate assigning a
“color” to each node. Consider the one- and two-dimensional examples on regular grids..

The iterative procedure for these types of coloring schemes solves for variables at nodes with a
certain color, then solves for variables at nodes of the other color. A linear system can be formed
with a block structure corresponding to the color scheme.

[

BLACK MIXED
MIXED RED

]

This method can easily be extended to include more colors. A common practice is to choose
colors such that no nodes has neighbors of the same color. It is desired in such cases to minimize
the number of colors so as to reduce the number of iteration steps.

12 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

5.5 Conjugate Gradient Method

The Conjugate Gradient Method is the most prominent iterative method for solving sparse sym-
metric positive definite linear systems. We now examine this method from parallel computing
perspective. The following is a copy of a pseudocode for the conjugate gradient algorithm.
Algorithm: Conjugate Gradient

1. x0 = 0, r0 = b − Ax0 = b

2. do m = 1, to n steps

(a) if m = 1, then p1 = r0

else

β = rT
m−1rm−1/rT

m−2rm−2

pm = rm−1 + βpm−1

endif

(b) αm = rT
m−1rm−1/pT

mApm

(c) xm = xm−1 + αmpm

(d) rm = rm−1 − αmApm

When A is symmetric positive definite, the solution of Ax = b is equivalent to find a solution
to the following quadratic minimization problem.

min
x

φ(x) =
1

2
xT Ax − xT b.

In this setting, r0 = −∇φ and pT
i Apj = 0, i.e., pT

i and pj are conjugate with respect to A.
How many iterations shall we perform and how to reduce the number of iterations?

Theorem 5.5.1 Suppose the condition number is κ(A) = λmax(A)/λmin(A), since A is Symmetric

Positive Definite, ∀x0, suppose x∗ is a solution to Ax = b, then

||x∗ − xm||A ≤ 2||x∗ − x0||A(

√
κ − 1√
κ + 1

)m,

where ||V ||A = V T AV

Therefore, ||em|| ≤ 2||e0|| · (
√

κ−1√
κ+1

)m .

Another high order iterative method is Chebyshev iterative method. We refer interested readers
to the book by Own Axelsson (Iterative Solution Methods, Cambridge University Press). Conjugate
gradient method is a special Krylov subspace method. Other examples of Krylov subspace are
GMRES (Generalized Minimum Residual Method) and Lanczos Methods.

5.5.1 Parallel Conjugate Gradient

Within each iteration of the conjugate gradient algorithm a single matrix-vector product must be
taken. This calculation represents a bottleneck and the performance of conjugate gradient can be
improved by parallelizing this step.

First, the matrix (A), vector (x), and solution vector (y) are laid out by rows across multiple
processors as shown in Figure 5.7.

The algorithm for the distributed calculation is then simple: On each processor j, broadcast
x(j) and then compute y(j) = A(j, :) ∗ x.

Preface 13

Figure 5.7: Example distribution of A, x, and b on four processors

5.6 Preconditioning

Preconditioning is important in reducing the number of iterations needed to converge in many
iterative methods. Put more precisely, preconditioning makes iterative methods possible in practice.
Given a linear system Ax = b a parallel preconditioner is an invertible matrix C satisfying the
following:

1. The inverse C−1 is relatively easy to compute. More precisely, after preprocessing the matrix
C, solving the linear system Cy = b′ is much easier than solving the system Ax = b. Further,
there are fast parallel solvers for Cy = b′.

2. Iterative methods for solving the system C−1Ax = C−1b, such as, conjugate gradient1 should
converge much more quickly than they would for the system Ax = b.

Generally a preconditioner is intended to reduce κ(A).
Now the question is: how to choose a preconditioner C? There is no definite answer to this.

We list some of the popularly used preconditioning methods.

• The basic splitting matrix method and SOR can be viewed as preconditioning methods.

• Incomplete factorization preconditioning: the basic idea is to first choose a good “spar-
sity pattern” and perform factorization by Gaussian elimination. The method rejects those
fill-in entries that are either small enough (relative to diagonal entries) or in position outside
the sparsity pattern. In other words, we perform an approximate factorization L∗U∗ and
use this product as a preconditioner. One effective variant is to perform block incomplete
factorization to obtain a preconditioner.

The incomplete factorization methods are often effective when tuned for a particular appli-
cation. The methods also suffer from being too highly problem-dependent and the condition
number usually improves by only a constant factor.

1In general the matrix C
−1

A is not symmetric. Thus the formal analysis uses the matrix LAL
T where C

−1 = LL
T

[?].

14 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 5.8: Example conversion of the graph of matrix A (G(A)) to a subgraph (G(B))

• Subgraph preconditioning: The basic idea is to choose a subgraph of the graph defined
by the matrix of the linear system so that the linear system defined by the subgraph can be
solved efficiently and the edges of the original graph can be embedded in the subgraph with
small congestion and dilation, which implies small condition number of the preconditioned
matrix. In other words, the subgraph can “support” the original graph. An example of
converting a graph to a subgraph is shown in Figure 5.8.

The subgraph can be factored in O(n) space and time and applying the preconditioner takes
O(n) time per iteration.

• Block diagonal preconditioning: The observation of this method is that a matrix in many
applications can be naturally partitioned in the form of a 2 × 2 blocks

A =

(

A11 A12

A21 A22

)

Moreover, the linear system defined by A11 can be solved more efficiently. Block diagonal
preconditioning chooses a preconditioner with format

C =

(

B11 0
0 B22

)

with the condition that B11 and B22 are symmetric and

α1A11 ≤ B11 ≤ α2A11

β1A22 ≤ B22 ≤ β2A22

Block diagonal preconditioning methods are often used in conjunction with domain decom-
position technique. We can generalize the 2-block formula to multi-blocks, which correspond
to multi-region partition in the domain decomposition.

• Sparse approximate inverses: Sparse approximate inverses (B−1) of A can be computed
such that A ≈ B−1. This inverse is computed explicitly and the quantity ||B−1A − I||F is
minimized in parallel (by columns). This value of B−1 can then be used as a preconditioner.
This method has the advantage of being very parallel, but suffers from poor effectiveness in
some situations.

Preface 15

5.7 Symmetric Supernodes

The following Section on Symmetric Supernodes is an edited excerpt from “A Supern-
odal Approach to Sparse Partial Pivoting,” by Demmel, Eisenstat, Gilbert, Li, and
Liu.

The idea of a supernode is to group together columns with the same nonzero structure, so they
can be treated as a dense matrix for storage and computation. In the factorization A = LLT (or
A = LDLT), a supernode is a range (r : s) of columns of L with the same nonzero structure below
the diagonal; that is, L(r : s, r : s) is full lower triangular and every row of L(s : n, r : s) is either
full or zero.

All the updates from columns of a supernode are summed into a dense vector before the sparse
update is performed. This reduces indirect addressing and allows the inner loops to be unrolled.
In effect, a sequence of col-col updates is replaced by a supernode-column (sup-col) update. The
sup-col update can be implemented using a call to a standard dense Level 2 BLAS matrix-vector
multiplication kernel. This idea can be further extended to supernode-supernode (sup-sup) updates,
which can be implemented using a Level 3 BLAS dense matrix-matrix kernel. This can reduce
memory traffic by an order of magnitude, because a supernode in the cache can participate in
multiple column updates. Ng and Peyton reported that a sparse Cholesky algorithm based on
sup-sup updates typically runs 2.5 to 4.5 times as fast as a col-col algorithm.

To sum up, supernodes as the source of updates help because of the following:

1. The inner loop (over rows) has no indirect addressing. (Sparse Level 1 BLAS is replaced by
dense Level 1 BLAS.)

2. The outer loop (over columns in the supernode) can be unrolled to save memory references.
(Level 1 BLAS is replaced by Level 2 BLAS.)

Supernodes as the destination of updates help because of the following:

3. Elements of the source supernode can be reused in multiple columns of the destination su-
pernode to reduce cache misses. (Level 2 BLAS is replaced by Level 3 BLAS.)

Supernodes in sparse Cholesky can be determined during symbolic factorization, before the
numeric factorization begins. However, in sparse LU, the nonzero structure cannot be predicted
before numeric factorization, so we must identify supernodes on the fly. Furthermore, since the
factors L and U are no longer transposes of each other, we must generalize the definition of a
supernode.

5.7.1 Unsymmetric Supernodes

There are several possible ways to generalize the symmetric definition of supernodes to unsymmetric
factorization. We define F = L + U − I to be the filled matrix containing both L and U .

T1 Same row and column structures: A supernode is a range (r : s) of columns of L and rows of
U , such that the diagonal block F (r : s, r : s) is full, and outside that block all the columns
of L in the range have the same structure and all the rows of U in the range have the same
structure. T1 supernodes make it possible to do sup-sup updates, realizing all three benefits.

T2 Same column structure in L: A supernode is a range (r : s) of columns of L with triangular
diagonal block full and the same structure below the diagonal block. T2 supernodes allow
sup-col updates, realizing the first two benefits.

16 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 5.9: Four possible types of unsymmetric supernodes.

T3 Same column structure in L, full diagonal block in U : A supernode is a range (r : s) of columns
of L and U , such that the diagonal block F (r : s, r : s) is full, and below the diagonal block
the columns of L have the same structure. T3 supernodes allow sup-col updates, like T2. In
addition, if the storage for a supernode is organized as for a two-dimensional (2-D) array (for
Level 2 or 3 BLAS calls), T3 supernodes do not waste any space in the diagonal block of U .

T4 Same column structure in L and U : A supernode is a range (r : s) of columns of L and U
with identical structure. (Since the diagonal is nonzero, the diagonal block must be full.) T4
supernodes allow sup-col updates, and also simplify storage of L and U .

T5 Supernodes of AT A: A supernode is a range (r : s) of columns of L corresponding to a
Cholesky supernode of the symmetric matrix AT A. T5 supernodes are motivated by the
observation that (with suitable representations) the structures of L and U in the unsymmetric
factorization PA = LU are contained in the structure of the Cholesky factor of AT A. In
unsymmetric LU, these supernodes themselves are sparse, so we would waste time and space
operating on them. Thus we do not consider them further.

Figure 5.9 is a schematic of definitions T1 through T4.

Supernodes are only useful if they actually occur in practice. We reject T4 supernodes as being
too rare to make up for the simplicity of their storage scheme. T1 supernodes allow Level 3 BLAS
updates, but we can get most of their cache advantage with the more common T2 or T3 supernodes
by using supernode-panel updates. Thus we conclude that either T2 or T3 is best by our criteria.

Figure 5.10 shows a sample matrix and the nonzero structure of its factors with no pivoting.
Using definition T2, this matrix has four supernodes: {1, 2}, {3}, {4, 5, 6}, and {7, 8, 9, 10}. For
example, in columns 4, 5, and 6 the diagonal blocks of L and U are full, and the columns of L all
have nonzeros in rows 8 and 9. By definition T3, the matrix has five supernodes: {1, 2}, {3}, {4,
5, 6}, {7}, and {8, 9, 10}. Column 7 fails to join {8, 9, 10} as a T3 supernode because u78 is zero.

5.7.2 The Column Elimination Tree

Since our definition requires the columns of a supernode to be contiguous, we should get larger
supernodes if we bring together columns of L with the same nonzero structure. But the column
ordering is fixed, for sparsity, before numeric factorization; what can we do?

Preface 17

Figure 5.10: A sample matrix and its LU factors. Diagonal elements a55 and a88 are zero.

Figure 5.11: Supernodal structure bydefinitionT2 of the factors of the sample matrix.

18 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 5.12: LU factorization with supernode-column updates

In symmetric Cholesky factorization, one type of supernodes - the ”fundamental” supernodes -
can be made contiguous by permuting the matrix (symmetrically) according to a postorder on its
elimination tree. This postorder is an example of what Liu calls an equivalent reordering, which
does not change the sparsity of the factor. The postordered elimination tree can also be used to
locate the supernodes before the numeric factorization.

We proceed similarly for the unsymmetric case. Here the appropriate analogue of the symmetric
elimination tree is the column elimination tree, or column etree for short. The vertices of this tree are
the integers 1 through n, representing the columns of A. The column etree of A is the (symmetric)
elimination tree of the column intersection graph of A, or equivalently the elimination tree of AT A
provided there is no cancellation in computing AT A. See Gilbert and Ng for complete definitions.
The column etree can be computed from A in time almost linear in the number of nonzeros of A.

Just as a postorder on the symmetric elimination tree brings together symmetric supernodes,
we expect a postorder on the column etree to bring together unsymmetric supernodes. Thus, before
we factor the matrix, we compute its column etree and permute the matrix columns according to
a postorder on the tree.

5.7.3 Relaxed Supernodes

For most matrices, the average size of a supernode is only about 2 to 3 columns (though a few
supernodes are much larger). A large percentage of supernodes consist of only a single column,
many of which are leaves of the column etree. Therefore merging groups of columns at the fringe of
the etree into artificial supernodes regardless of their row structures can be beneficial. A parameter
r controls the granularity of the merge. A good merge rule is: node i is merged with its parent
node j when the subtree rooted at j has at most r nodes. In practice, the best values of r are
generally between 4 and 8 and yield improvements in running time of 5% to 15%.

Artificial supernodes are a special case of relaxed supernodes. They allow a small number of
zeros in the structure of any supernode, thus relaxing the condition that the columns must have
strictly nested structures.

Preface 19

5.7.4 Supernodal Numeric Factorization

Now we show how to modify the col-col algorithm to use sup-col updates and supernode-panel
updates. This section describes the numerical computation involved in the updates.

Supernode-Column Updated

Figure 5.12 sketches the sup-col algorithm. The only difference from the col-col algorithm is that
all the updates to a column from a single supernode are done together. Consider a supernode (r : s)
that updates column j. The coefficients of the updates are the values from a segment of column j
of U , namely U(r : s, j). The nonzero structure of such a segment is particularly simple: all the
nonzeros are contiguous, and follow all the zeros. Thus, if k is the index of the first nonzero row
in U(r : s, j), the updates to column j from supernode (r : s) come from columns k through s.
Since the supernode is stored as a dense matrix, these updates can be performed by a dense lower
triangular solve (with the matrix L(k : s, k : s)) and a dense matrix-vector multiplication (with the
matrix L(s + 1 : n, k : s)). The symbolic phase determines the value of k, that is, the position of
the first nonzero in the segment U(r : s, j).

The advantages of using sup-col updates are similar to those in the symmetric case. Efficient
Level 2 BLAS matrix-vector kernels can be used for the triangular solve and matrix-vector multiply.
Furthermore, all the updates from the supernodal columns can be collected in a dense vector before
doing a single scatter into the target vector. This reduces the amount of indirect addressing.

Supernode-Panel Updates

We can improve the sup-col algorithm further on machines with a memory hierarchy by changing
the data access pattern. The data we are accessing in the inner loop (lines 5-9 of Figure 5.12)
include the destination column j and all the updating supernodes (r : s) to the left of column j.
Column j is accessed many times, while each supernode (r : s) is used only once. In practice,
the number of nonzero elements in column j is much less than that in the updating supernodes.
Therefore, the access pattern given by this loop provides little opportunity to reuse cached data.
In particular, the same supernode (r : s) may be needed to update both columns j and j + 1.
But when we factor the (j+1)th column (in the next iteration of the outer loop), we will have to
fetch supernode (r : s) again from memory, instead of from cache (unless the supernodes are small
compared to the cache).

Panels

To exploit memory locality, we factor several columns (say w of them) at a time in the outer loop,
so that one updating supernode (r : s) can be used to update as many of the w columns as possible.
We refer to these w consecutive columns as a panel to differentiate them from a supernode, the
row structures of these columns may not be correlated in any fashion, and the boundaries between
panels may be different from those between supernodes. The new method requires rewriting the
doubly nested loop as the triple loop shown in Figure 5.13.

The structure of each sup-col update is the same as in the sup-col algorithm. For each supernode
(r : s) to the left of column j, if ukj 6= 0 for some r ≤ k ≤ s, then uij 6= 0 for all k ≤ i ≤ s.
Therefore, the nonzero structure of the panel of U consists of dense column segments that are
row-wise separated by supernodal boundaries, as in Figure 5.13. Thus, it is sufficient for the
symbolic factorization algorithm to record only the first nonzero position of each column segment.

20 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Figure 5.13: The supernode-panel algorithm, with columnwise blocking. J = 1 : j − 1

Preface 21

As detailed in section 4.4, symbolic factorization is applied to all the columns in a panel at once,
over all the updating supernodes, before the numeric factorization step.

In dense factorization, the entire supernode-panel update in lines 3-7 of Figure 5.13 would
be implemented as two Level 3 BLAS calls: a dense triangular solve with w right-hand sides,
followed by a dense matrix-matrix multiply. In the sparse case, this is not possible, because the
different sup-col updates begin at different positions k within the supernode, and the submatrix
U(r : s, j : j + w − 1) is not dense. Thus the sparse supernode-panel algorithm still calls the Level
2 BLAS. However, we get similar cache benefits to those from the Level 3 BLAS, at the cost of
doing the loop reorganization ourselves. Thus we sometimes call the kernel of this algorithm a
”BLAS-21

2” method.

In the doubly nested loop (lines 3-7 of Figure 5.13), the ideal circumstance is that all w columns
in the panel require updates from supernode (r : s). Then this supernode will be used w times
before it is forced out of the cache. There is a trade-off between the value of w and the size of the
cache. For this scheme to work efficiently, we need to ensure that the nonzeros in the w columns do
not cause cache thrashing. That is, we must keep w small enough so that all the data accessed in
this doubly nested loop fit in cache. Otherwise, the cache interference between the source supernode
and the destination panel can offset the benefit of the new algorithm.

5.8 Efficient sparse matrix algorithms

5.8.1 Scalable algorithms

By a scalable algorithm for a problem, we mean one that maintains efficiency bounded away from
zero as the number p of processors grows and the size of the data structures grows roughly linearly
in p.

Notable efforts at analysis of the scalability of dense matrix computations include those of Li
and Coleman [58] for dense triangular systems, and Saad and Schultz [85]; Ostrouchov, et al. [73],
and George, Liu, and Ng [39] have made some analyses for algorithms that map matrix columns
to processors. Rothberg and Gupta [81] is a important paper for its analysis of the effect of caches
on sparse matrix algorithms.

Consider any distributed-memory computation. In order to assess the communication costs
analytically, it s useful to employ certain abstract lower bounds. Our model assumes that machine
topology is given. It assumes that memory consists of the memories local to processors. It assumes
that the communication channels are the edges of a given undirected graph G = (W, L), and
that processor–memory units are situated at some, possibly all, of the vertices of the graph. The
model includes hypercube and grid-structured message-passing machines, shared-memory machines
having physically distributed memory (the Tera machine) as well as tree-structured machines like
a CM-5.

Let V ⊆ W be the set of all processors and L be the set of all communication links.

We assume identical links. Let β be the inverse bandwidth (slowness) of a link in seconds
per word. (We ignore latency in this model; most large distributed memory computations are
bandwidth limited.)

We assume that processors are identical. Let φ be the inverse computation rate of a processor
in seconds per floating-point operation. Let β0 be the rate at which a processor can send or receive
data, in seconds per word. We expect that β0 and β will be roughly the same.

A distributed-memory computation consists of a set of processes that exchange information by
sending and receiving messages. Let M be the set of all messages communicated. For m ∈ M ,

22 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

|m| denotes the number of words in m. Each message m has a source processor src(m) and a
destination processor dest(m), both elements of V .

For m ∈ M , let d(m) denote the length of the path taken by m from the source of the message
m to its destination. We assume that each message takes a certain path of links from its source to
its destination processor. Let p(m) = (`1, `2, . . . , `d(m)) be the path taken by message m. For any
link ` ∈ L, let the set of messages whose paths utilize `, {m ∈ M | ` ∈ p(m)}, be denoted M(`).

The following are obviously lower bounds on the completion time of the computation. The first
three bounds are computable from the set of message M , each of which is characterized by its size
and its endpoints. The last depends on knowledge of the paths p(M) taken by the messages.

1. (Average flux)
∑

m∈M |m| · d(m)

|L| · β.

This is the total flux of data, measured in word-hops, divided by the machine’s total commu-
nication bandwidth, L/β.

2. (Bisection width) Given V0, V1 ⊆ W , V0 and V1 disjoint, define

sep(V0, V1) ≡ min |{L′ ⊆ L | L′ is an edge separator of V0 and V1}|

and

flux(V0, V1) ≡
∑

{m∈M | src(m)∈Vi,dest(m)∈V1−i}
|m| .

The bound is
flux(V0, V1)

sep(V0, V1)
· β.

This is the number of words that cross from one part of the machine to the other, divided by
the bandwidth of the wires that link them.

3. (Arrivals/Departures (also known as node congestion))

max
v∈V

∑

dest(m) = v

|m|β0;

max
v∈V

∑

src(m) = v

|m|β0.

This is a lower bound on the communication time for the processor with the most traffic into
or out of it.

4. (Edge contention)

max
`∈L

∑

m∈M(`)

|m|β.

This is a lower bound on the time needed by the most heavily used wire to handle all its
traffic.

Preface 23

Of course, the actual communication time may be greater than any of the bounds. In particular,
the communication resources (the wires in the machine) need to be scheduled. This can be done
dynamically or, when the set of messages is known in advance, statically. With detailed knowledge
of the schedule of use of the wires, better bounds can be obtained. For the purposes of analysis
of algorithms and assignment of tasks to processors, however, we have found this more realistic
approach to be unnecessarily cumbersome. We prefer to use the four bounds above, which depend
only on the integrated (i.e. time-independent) information M and, in the case of the edge-contention
bound, the paths p(M). In fact, in the work below, we won’t assume knowledge of paths and we
won’t use the edge contention bound.

5.8.2 Cholesky factorization

We’ll use the techniques we’ve introduced to analyze alternative distributed memory implemen-
tations of a very important computation, Cholesky factorization of a symmetric, positive definite
(SPD) matrix A. The factorization is A = LLT where L is lower triangular; A is given, L is to be
computed.

The algorithm is this:

1. L := A
2. for k = 1 to N do

3. Lkk :=
√

Lkk

4. for i = k + 1 to N do

5. Lik := LikL
−1
kk

6. for j = k + 1 to N do

7. for i = j to N do

8. Lij := Lij − LikL
T
jk

We can let the elements Lij be scalars, in which case this is the usual or “point” Cholesky algorithm.
Or we can take Lij to be a block, obtained by dividing the rows into contiguous subsets and making
the same decomposition of the columns, so that diagonal blocks are square. In the block case, the
computation of

√
Lkk (Step 3) returns the (point) Cholesky factor of the SPD block Lkk. If A is

sparse (has mostly zero entries) then L will be sparse too, although less so than A. In that case,
only the non-zero entries in the sparse factor L are stored, and the multiplication/division in lines
5 and 8 are omitted if they compute zeros.

Mapping columns

Assume that the columns of a dense symmetric matrix of order N are mapped to processors
cyclically: column j is stored in processor map(j) ≡ j mod p. Consider communication costs on
two-dimensional grid or toroidal machines. Suppose that p is a perfect square and that the machine
is a

√
p × √

p grid. Consider a mapping of the computation in which the operations in line 8 are
performed by processor map(j). After performing the operations in line 5, processor map(k) must
send column k to all processors {map(j) | j > k}.

Let us fix our attention on 2D grids. There are L = 2p+O(1) links. A column can be broadcast
from its source to all other processors through a spanning tree of the machine, a tree of total length
p reaching all the processors. Every matrix element will therefore travel over p − 1 links, so the
total information flux is (1/2)N 2p and the average flux bound is (1/4)N 2β.

24 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Type of Bound Lower bound

Arrivals 1
4N2β0

Average flux 1
4N2β

Table 5.1: Communication Costs for Column-Mapped Full Cholesky.

Type of Bound Lower bound

Arrivals 1
4N2β

(

1
pr

+ 1
pc

)

Edge contention N2β
(

1
pr

+ 1
pc

)

Table 5.2: Communication Costs for Torus-Mapped Full Cholesky.

Only O(N2/p) words leave any processor. If N � p, processors must accept almost the whole
(1/2)N2 words of L as arriving columns. The bandwidth per processor is β0, so the arrivals bound
is (1/2)N2β0 seconds. If N ≈ p the bound drops to half that, (1/4)N 2β0 seconds. We summarize
these bounds for 2D grids in Table 5.1.

We can immediately conclude that this is a nonscalable distributed algorithm. We may not
take p > Nφ

β and still achieve high efficiency.

Mapping blocks

Dongarra, Van de Geijn, and Walker [26] have shown that on the Intel Touchstone Delta ma-
chine (p = 528), mapping blocks is better than mapping columns in LU factorization. In such a
mapping, we view the machine as an pr × pc grid and we map elements Aij and Lij to processor
(mapr(i), mapc(j)). We assume a cyclic mappings here: mapr(i) ≡ i mod pr and similarly for
mapc.

The analysis of the preceding section may now be done for this mapping. Results are summarized
in Table 5.2. With pr and pc both O(

√
p), the communication time drops like O(p−1/2). With this

mapping, the algorithm is scalable even when β � φ. Now, with p = O(N 2), both the compute
time and the communication lower bounds agree; they are O(N). Therefore, we remain efficient
when storage per processor is O(1). (This scalable algorithm for distributed Cholesky is due to
O’Leary and Stewart [72].)

5.8.3 Distributed sparse Cholesky and the model problem

In the sparse case, the same holds true. To see why this must be true, we need only observe
that most of the work in sparse Cholesky factorization takes the form of the factorization of dense
submatrices that form during the Cholesky algorithm. Rothberg and Gupta demonstrated this fact
in their work in 1992 – 1994.

Unfortunately, with naive cyclic mappings, block-oriented approaches suffer from poor balance

Preface 25

of the computational load and modest efficiency. Heuristic remapping of the block rows and columns
can remove load imbalance as a cause of inefficiency.

Several researchers have obtained excellent performance using a block-oriented approach, both
on fine-grained, massively-parallel SIMD machines [23] and on coarse-grained, highly-parallel
MIMD machines [82]. A block mapping maps rectangular blocks of the sparse matrix to pro-
cessors. A 2-D mapping views the machine as a 2-D pr × pc processor grid, whose members are
denoted p(i, j). To date, the 2-D cyclic (also called torus-wrap) mapping has been used: block Lij

resides at processor p(i mod pr, j mod pc). All blocks in a given block row are mapped to the same
row of processors, and all elements of a block column to a single processor column. Communication
volumes grow as the square root of the number of processors, versus linearly for the 1-D mapping;
2-D mappings also asymptotically reduce the critical path length. These advantages accrue even
when the underlying machine has some interconnection network whose topology is not a grid.

A 2-D cyclic mapping, however, produces significant load imbalance that severely limits achieved
efficiency. On systems (such as the Intel Paragon) with high interprocessor communication band-
width this load imbalance limits efficiency to a greater degree than communication or want of
parallelism.

An alternative, heuristic 2-D block mapping succeeds in reducing load imbalance to a point
where it is no longer the most serious bottleneck in the computation. On the Intel Paragon the
block mapping heuristic produces a roughly 20% increase in performance compared with the cyclic
mapping.

In addition, a scheduling strategy for determining the order in which available tasks are per-
formed adds another 10% improvement.

5.8.4 Parallel Block-Oriented Sparse Cholesky Factorization

In the block factorization approach considered here, matrix blocks are formed by dividing the
columns of the n × n matrix into N contiguous subsets, N ≤ n. The identical partitioning is
performed on the rows. A block Lij in the sparse matrix is formed from the elements that fall
simultaneously in row subset i and column subset j.

Each block Lij has an owning processor. The owner of Lij performs all block operations that
update Lij (this is the “owner-computes” rule for assigning work). Interprocessor communication
is required whenever a block on one processor updates a block on another processor.

Assume that the processors can be arranged as a grid of pr rows and pc columns. In a Cartesian

product (CP) mapping, map(i, j) = p(RowMap(i), ColMap(j)), where RowMap : {0..N − 1} →
{0..pr − 1}, and ColMap : {0..N − 1} → {0..pc − 1} are given mappings of rows and columns
to processor rows and columns. We say that map is symmetric Cartesian (SC) if pr = pc and
RowMap = ColMap. The usual 2-D cyclic mapping is SC.2

5.9 Load balance with cyclic mapping

Any CP mapping is effective at reducing communication. While the 2-D cyclic mapping is CP,
unfortunately it is not very effective at balancing computational load. Experiment and analysis
show that the cyclic mapping produces particularly poor load balance; moreover, some serious
load balance difficulties must occur for any SC mapping. Improvements obtained by the use of
nonsymmetric CP mappings are discussed in the following section.

2See [82] for a discussion of domains, portions of the matrix mapped in a 1-D manner to further reduce commu-
nication.

26 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

0 2 4 6 8 10 12
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MATRIX NUMBER

E
F

F
IC

IE
N

C
Y

 A
N

D
 L

O
A

D
 B

A
LA

N
C

E

x efficiency, P=64

* balance, P=64

+ efficiency, P=100

o balance, P=100

Figure 5.14: Efficiency and overall balance on the Paragon system (B = 48).

Our experiments employ a set of test matrices including two dense matrices (DENSE1024 and
DENSE2048), two 2-D grid problems (GRID150 and GRID300), two 3-D grid problems (CUBE30
and CUBE35), and 4 irregular sparse matrices from the Harwell-Boeing sparse matrix test set
[27]. Nested dissection or minimum degree orderings are used. In all our experiments, we choose
pr = pc =

√
P , and we use a block size of 48. All Mflops measurements presented here are computed

by dividing the operation counts of the best known sequential algorithm by parallel runtimes. Our
experiments were performed on an Intel Paragon, using hand-optimized versions of the Level-3
BLAS for almost all arithmetic.

5.9.1 Empirical Load Balance Results

We now report on the efficiency and load balance of the method. Parallel efficiency is given by
tseq/(P · tpar), where tpar is the parallel runtime, P is the number of processors, and tseq is the
runtime for the same problem on one processor. For the data we report here, we measured tseq

by factoring the benchmark matrices using our parallel algorithm on one processor. The overall
balance of a distributed computation is given by worktotal/(P · workmax), where worktotal is the
total amount of work performed in the factorization, P is the number of processors, and workmax

is the maximum amount of work assigned to any processor. Clearly, overall balance is an upper
bound on efficiency.

Figure 1 shows efficiency and overall balance with the cyclic mapping. Observe that load
balance and efficiency are generally quite low, and that they are well correlated. Clearly, load
balance alone is not a perfect predictor of efficiency. Other factors limit performance. Examples
include interprocessor communication costs, which we measured at 5% — 20% of total runtime, long
critical paths, which can limit the number of block operations that can be performed concurrently,
and poor scheduling, which can cause processors to wait for block operations on other processors
to complete. Despite these disparities, the data indicate that load imbalance is an important
contributor to reduced efficiency.

We next measured load imbalance among rows of processors, columns of processors, and di-
agonals of processors. Define work[i, j] to be the runtime due to updating of block Lij by
its owner. To approximate runtime, we use an empirically calibrated estimate of the form
work = operations + ω · block-operations; on the Paragon, ω = 1, 000.

Define RowWork[i] to be the aggregate work required by blocks in row i: RowWork[i] =
∑N−1

j=0 work[i, j]. An analogous definition applies for ColWork, the aggregate column work. Define

Preface 27

0 2 4 6 8 10 12
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MATRIX NUMBER

LO
A

D
 B

A
LA

N
C

E

+ row bal.

x col bal.

o diag bal.

* overall bal.

Figure 5.15: Efficiency bounds for 2-D cyclic mapping due to row, column and diagonal imbalances
(P = 64, B = 48).

row balance by worktotal/pr · workrowmax, where workrowmax = maxr
∑

i:RowMap[i]=r RowWork[i].
This row balance statistic gives the best possible overall balance (and hence efficiency), obtained
only if there is perfect load balance within each processor row. It isolates load imbalance due to an
overloaded processor row caused by a poor row mapping. An analogous expression gives column
balance, and a third analogous expression gives diagonal balance. (Diagonal d is made up of the
set of processors p(i, j) for which (i − j) mod pr = d.) While these three aggregate measures of
load balance are only upper bounds on overall balance, the data we present later make it clear that
improving these three measures of balance will in general improve the overall load balance.

Figure 2 shows the row, column, and diagonal balances with a 2-D cyclic mapping of the
benchmark matrices on 64 processors. Diagonal imbalance is the most severe, followed by row
imbalance, followed by column imbalance.

These data can be better understood by considering dense matrices as examples (although the
following observations apply to a considerable degree to sparse matrices as well). Row imbalance
is due mainly to the fact that RowWork[i], the amount of work associated with a row of blocks,
increases with increasing i. More precisely, since work[i, j] increases linearly with j and the number
of blocks in a row increases linearly with i, it follows that RowWork[i] increases quadratically in i.
Thus, the processor row that receives the last block row in the matrix receives significantly more
work than the processor row immediately following it in the cyclic ordering, resulting in significant
row imbalance. Column imbalance is not nearly as severe as row imbalance. The reason, we believe,
is that while the work associated with blocks in a column increases linearly with the column number
j, the number of blocks in the column decreases linearly with j. As a result, ColWork[j] is neither
strictly increasing nor strictly decreasing. In the experiments, row balance is indeed poorer than
column balance. Note that the reason for the row and column imbalance is not that the 2-D cyclic
mapping is an SC mapping; rather, we have significant imbalance because the mapping functions
RowMap and ColMap are each poorly chosen.

To better understand diagonal imbalance, one should note that blocks on the diagonal of the
matrix are mapped exclusively to processors on the main diagonal of the processor grid. Blocks
just below the diagonal are mapped exclusively to processors just below the main diagonal of the
processor grid. These diagonal and sub-diagonal blocks are among the most work-intensive blocks in
the matrix. In sparse problems, moreover, the diagonal blocks are the only ones that are guaranteed
to be dense. (For the two dense test matrices, diagonal balance is not significantly worse than row
balance.) The remarks we make about diagonal blocks and diagonal processors apply to any SC

28 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

mapping, and do not depend on the use of a cyclic function RowMap(i) = i mod pr.

5.10 Heuristic Remapping

Nonsymmetric CP mappings, which map rows independently of columns, are a way to avoid diag-
onal imbalance that is automatic with SC mappings. We shall choose the row mapping RowMap
to maximize the row balance, and independently choose ColMap to maximize column balance.
Since the row mapping has no effect on the column balance, and vice versa, we may choose the row
mapping in order to maximize row balance independent of the choice of column mapping.

The problems of determining RowMap and ColMap are each cases of a standard NP-complete
problem, number partitioning [36], for which a simple heuristic is known to be good 3. This
heuristic obtains a row mapping by considering the block rows in some predefined sequence. For
each processor row, it maintains the total work for all blocks mapped to that row. The algorithm
iterates over block rows, mapping a block row to the processor row that has received the least work
thus far. We have experimented with several different sequences, the two best of which we now
describe.

The Decreasing Work (DW) heuristic considers rows in order of decreasing work. This is a
standard approach to number partitioning; that small values toward the end of the sequence allow
the algorithm to lessen any imbalance caused by large values encountered early in the sequence.

The Increasing Depth (ID) heuristic considers rows in order of increasing depth in the
elimination tree. In a sparse problem, the work associated with a row is closely related to its depth
in the elimination tree.

The effect of these schemes is dramatic. If we look at the three aggregate measures of load
balance, we find that these heuristics produce row and column balance of 0.98 or better, and
diagonal balance of 0.93 or better, for test case BCSSTK31, which is typical. With ID as the row
mapping we have produced better than a 50% improvement in overall balance, and better than
a 20% improvement in performance, on average over our test matrices, with P = 100. The DW
heuristic produces only slightly less impressive improvements The choice of column mapping, as
expected, is less important. In fact, for our test suite, the cyclic column mapping and ID row
mapping gave the best mean performance. 4

We also applied these ideas to four larger problems: DENSE4096, CUBE40, COPTER2 (a
helicopter rotor blade model, from NASA) and 10FLEET (a linear programming formulation of
an airline fleet assignment problem, from Delta Airlines). On 144 and 196 processors the heuristic
(increasing depth on rows and cyclic on columns) again produces a roughly 20% performance
improvement over a cyclic mapping. Peak performance of 2.3 Gflops for COPTER2 and 2.7 Gflops
for 10FLEET were achieved; for the model problems CUBE40 and DENSE4096 the speeds were
3.2 and 5.2 Gflops.

In addition to the heuristics described so far, we also experimented with two other approaches
to improving factorization load balance. The first is a subtle modification of the original heuristic.
It begins by choosing some column mapping (we use a cyclic mapping). This approach then iterates
over rows of blocks, mapping a row of blocks to a row of processors so as to minimize the amount
of work assigned to any one processor . Recall that the earlier heuristic attempted to minimize the
aggregate work assigned to an entire row of processors. We found that this alternative heuristic
produced further large improvements in overall balance (typically 10-15% better than that of our

3Number partitioning is a well studied NP-complete problem. The objective is to distribute a set of numbers
among a fixed number of bins so that the maximum sum in any bin is minimized.

4Full experimental data has appeared in another paper [83].

Preface 29

original heuristic). Unfortunately, realized performance did not improve. This result indicates
that load balance is not the most important performance bottleneck once our original heuristic is
applied.

A very simple alternate approach reduces imbalance by performing cyclic row and column
mappings on a processor grid whose dimensions pc and pr are relatively prime; this reduces diagonal
imbalance. We tried this using 7× 9 and 9× 11 processor grids (using one fewer processor that for
our earlier experiments with P = 64 and P = 100.) The improvement in performance is somewhat
lower than that achieved with our earlier remapping heuristic (17% and 18% mean improvement
on 63 and 99 processors versus 20% and 24% on 64 and 100 processors). On the other hand, the
mapping needn’t be computed.

5.11 Scheduling Local Computations

The next questions to be addressed, clearly, are: (i) what is the most constraining bottleneck after
our heuristic is applied, and (ii) can this bottleneck be addressed to further improve performance?

One potential remaining bottleneck is communication. Instrumentation of our block factoriza-
tion code reveals that on the Paragon system, communication costs account for less than 20% of
total runtime for all problems, even on 196 processors. The same instrumentation reveals that most
of the processor time not spent performing useful factorization work is spent idle, waiting for the
arrival of data.

We do not believe that the idle time is due to insufficient parallelism. Critical path analysis for
problem BCSSTK15 on 100 processors, for example, indicates that it should be possible to obtain
nearly 50% higher performance than we are currently obtaining. The same analysis for problem
BCSSTK31 on 100 processors indicates that it should be possible to obtain roughly 30% higher
performance. We therefore suspected that the scheduling of tasks by our code was not optimal.

To that end we tried alternative scheduling policies. They are:
FIFO. Tasks are initiated in the order in which the processor discovers that they are ready.
Destination depth. Ready tasks initiated in order of the destination block’s elimination tree

depth.
Source depth. Ready tasks initiated in order of the source block’s elimination tree depth.
For the FIFO policy, a queue of ready tasks is used, while for the others, a heap is used. We

experimented with 64 processors, using BSCCST31, BCSSTK33, and DENSE2048. Both priority-
based schemes are better than FIFO; destination depth seems slightly better than source depth. We
observed a slowdown of 2% due to the heap data structure on BCSSTK33; the destination priority
scheme then improved performance by 15% for a net gain of 13%. For BSCCST31 the net gain
was 8%. For DENSE2048, however, there was no gain. This improvement is encouraging. There
may be more that can be achieved through the pursuit of a better understanding of the scheduling
question.

