
Lecture 3

Parallel Prefix

3.1 Parallel Prefix

An important primitive for (data) parallel computing is the scan operation, also called prefix sum

which takes an associated binary operator ⊕ and an ordered set [a1, . . . , an] of n elements and
returns the ordered set

[a1, (a1 ⊕ a2), . . . , (a1 ⊕ a2 ⊕ . . . ⊕ an)].

For example,

plus scan([1, 2, 3, 4, 5, 6, 7, 8]) = [1, 3, 6, 10, 15, 21, 28, 36].

Notice that computing the scan of an n-element array requires n − 1 serial operations.
Suppose we have n processors, each with one element of the array. If we are interested only

in the last element bn, which is the total sum, then it is easy to see how to compute it efficiently
in parallel: we can just break the array recursively into two halves, and add the sums of the two
halves, recursively. Associated with the computation is a complete binary tree, each internal node
containing the sum of its descendent leaves. With n processors, this algorithm takes O(log n) steps.
If we have only p < n processors, we can break the array into p subarrays, each with roughly
dn/pe elements. In the first step, each processor adds its own elements. The problem is then
reduced to one with p elements. So we can perform the log p time algorithm. The total time is
clearly O(n/p + log p) and communication only occur in the second step. With an architecture
like hypercube and fat tree, we can embed the complete binary tree so that the communication is
performed directly by communication links.

Now we discuss a parallel method of finding all elements [b1, . . . , bn] = ⊕ scan[a1, . . . , an] also
in O(log n) time, assuming we have n processors each with one element of the array. The following
is a Parallel Prefix algorithm to compute the scan of an array.

Function scan([ai]):

1. Compute pairwise sums, communicating with the adjacent processor
ci := ai−1 ⊕ ai (if i even)

2. Compute the even entries of the output by recursing on the size n
2

array of pairwise sums
bi := scan([ci]) (if i even)

3. Fill in the odd entries of the output with a pairwise sum
bi := bi−1 ⊕ ai (if i odd)

4. Return [bi].

1



2 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

Up the tree

1 2 3 4 5 6 7 8

3 7 11 15

10 26

36
Down the tree (Prefix)

1 3 6 10 15 21 28 36

3 10 21 36

10 36

36

Figure 3.1: Action of the Parallel Prefix algorithm.

Up the tree

1 2 3 4 5 6 7 8

3 7 11 15

10 26

36
Down the tree (Prefix Exclude)

0 1 3 6 10 15 21 28

0 3 10 21

0 10

0

Figure 3.2: The Parallel Prefix Exclude Algorithm.

An example using the vector [1, 2, 3, 4, 5, 6, 7, 8] is shown in Figure 3.1. Going up the tree, we
simply compute the pairwise sums. Going down the tree, we use the updates according to points
2 and 3 above. For even position, we use the value of the parent node (bi). For odd positions, we
add the value of the node left of the parent node (bi−1) to the current value (ai).

We can create variants of the algorithm by modifying the update formulas 2 and 3. For example,
the excluded prefix sum

[0, a1, (a1 ⊕ a2), . . . , (a1 ⊕ a2 ⊕ . . . ⊕ an−1)]

can be computed using the rule:

bi := excl scan([ci]) (if i odd), (3.1)

bi := bi−1 ⊕ ai−1 (if i even). (3.2)

Figure 3.2 illustrates this algorithm using the same input vector as before.
The total number of ⊕ operations performed by the Parallel Prefix algorithm is (ignoring a

constant term of ±1):

Tn =

I
︷︸︸︷
n

2
+

II
︷︸︸︷

Tn/2 +

III
︷︸︸︷
n

2
= n + Tn/2

= 2n



Preface 3

If there is a processor for each array element, then the number of parallel operations is:

Tn =

I
︷︸︸︷

1 +

II
︷︸︸︷

Tn/2 +

III
︷︸︸︷

1

= 2 + Tn/2

= 2 lg n

3.2 The “Myth” of lg n

In practice, we usually do not have a processor for each array element. Instead, there will likely
be many more array elements than processors. For example, if we have 32 processors and an array
of 32000 numbers, then each processor should store a contiguous section of 1000 array elements.
Suppose we have n elements and p processors, and define k = n/p. Then the procedure to compute
the scan is:

1. At each processor i, compute a local scan serially, for n/p consecutive elements, giving result
[di

1, d
i
2, . . . , d

i
k]. Notice that this step vectorizes over processors.

2. Use the parallel prefix algorithm to compute

scan([d1

k, d
2

k, . . . , d
p
k]) = [b1, b2, . . . , bp]

3. At each processor i > 1, add bi−1 to all elements di
j .

The time taken for the will be

T = 2 ·

(

time to add and store
n/p numbers serially

)

+ 2 · (log p) ·






Communication time
up and down a tree,

and a few adds






In the limiting case of p � n, the lg p message passes are an insignificant portion of the
computational time, and the speedup is due solely to the availability of a number of processes each
doing the prefix operation serially.

3.3 Applications of Parallel Prefix

3.3.1 Segmented Scan

We can extend the parallel scan algorithm to perform segmented scan. In segmented scan the
original sequence is used along with an additional sequence of booleans. These booleans are used
to identify the start of a new segment. Segmented scan is simply prefix scan with the additional
condition the the sum starts over at the beginning of a new segment. Thus the following inputs
would produce the following result when applying segmented plus scan on the array A and boolean
array C.

A = [1 2 3 4 5 6 7 8 9 10]

C = [1 0 0 0 1 0 1 1 0 1 ]

plus scan(A, C) = [1 3 6 10 5 11 7 8 17 10 ]



4 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

We now show how to reduce segmented scan to simple scan. We define an operator,
⊕

2, whose

operand is a pair

(

x
y

)

. We denote this operand as an element of the 2-element representation of

A and C, where x and y are corresponding elements from the vectors A and C. The operands of
the example above are given as:

(

1
1

)(

2
0

)(

3
0

)(

4
0

)(

5
1

)(

6
0

)(

7
1

)(

8
1

)(

9
0

)(

10
1

)

The operator (
⊕

2) is defined as follows:

⊕

2

(

y
0

) (

y
1

)

(

x
0

) (

x ⊕ y
0

) (

y
1

)

(

x
1

) (

x ⊕ y
1

) (

y
1

)

As an exercise, we can show that the binary operator
⊕

2 defined above is associative and
exhibits the segmenting behavior we want: for each vector A and each boolean vector C, let AC
be the 2-element representation of A and C. For each binary associative operator ⊕, the result
of
⊕

2 scan(AC) gives a 2-element vector whose first row is equal to the vector computed by
segmented ⊕ scan(A, C). Therefore, we can apply the parallel scan algorithm to compute the
segmented scan.

Notice that the method of assigning each segment to a separate processor may results in load
imbalance.

3.3.2 Csanky’s Matrix Inversion

The Csanky matrix inversion algorithm is representative of a number of the problems that exist
in applying theoretical parallelization schemes to practical problems. The goal here is to create
a matrix inversion routine that can be extended to a parallel implementation. A typical serial
implementation would require the solution of O(n2) linear equations, and the problem at first looks
unparallelizable. The obvious solution, then, is to search for a parallel prefix type algorithm.

Csanky’s algorithm can be described as follows — the Cayley-Hamilton lemma states that for
a given matrix x:

p(x) = det(xI − A) = xn + c1x
n−1 + . . . + cn

where cn = det(A), then

p(A) = 0 = An + c1A
n−1 + . . . + cn

Multiplying each side by A−1 and rearranging yields:

A−1 = (An−1 + c1A
n−2 + . . . + cn−1)/(−1/cn)

The ci in this equation can be calculated by Leverier’s lemma, which relate the ci to sk = tr(Ak).
The Csanky algorithm then, is to calculate the Ai by parallel prefix, compute the trace of each Ai,
calculate the ci from Leverier’s lemma, and use these to generate A−1.



Preface 5

Figure 3.3: Babbage’s Difference Engine, reconstructed by the Science Museum of London

While the Csanky algorithm is useful in theory, it suffers a number of practical shortcomings.
The most glaring problem is the repeated multiplication of the A matix. Unless the coefficients
of A are very close to 1, the terms of An are likely to increase towards infinity or decay to zero
quite rapidly, making their storage as floating point values very difficult. Therefore, the algorithm
is inherently unstable.

3.3.3 Babbage and Carry Look-Ahead Addition

Charles Babbage is considered by many to be the founder of modern computing. In the 1820s he
pioneered the idea of mechanical computing with his design of a “Difference Engine,” the purpose
of which was to create highly accurate engineering tables.

A central concern in mechanical addition procedures is the idea of “carrying,” for example, the
overflow caused by adding two digits in decimal notation whose sum is greater than or equal to
10. Carrying, as is taught to elementary school children everywhere, is inherently serial, as two
numbers are added left to right.

However, the carrying problem can be treated in a parallel fashion by use of parallel prefix.
More specifically, consider:

c3 c2 c1 c0 Carry
a3 a2 a1 a0 First Integer

+ b3 b2 b1 b0 Second Integer

s4 s3 s2 s1 s0 Sum

By algebraic manipulation, one can create a transformation matrix for computing ci from ci−1:

(

ci

1

)

=

(

ai + bi aibi

0 1

)

·

(

ci−1

1

)

Thus, carry look-ahead can be performed by parallel prefix. Each ci is computed by parallel
prefix, and then the si are calculated in parallel.



6 Math 18.337, Computer Science 6.338, SMA 5505, Spring 2004

3.4 Parallel Prefix in MPI

The MPI version of “parallel prefix” is performed by MPI_Scan. From Using MPI by Gropp, Lusk,
and Skjellum (MIT Press, 1999):

[MPI_Scan] is much like MPI_Allreduce in that the values are formed by combining
values contributed by each process and that each process receives a result. The difference
is that the result returned by the process with rank r is the result of operating on the
input elements on processes with rank 0, 1, . . . , r.

Essentially, MPI_Scan operates locally on a vector and passes a result to each processor. If
the defined operation of MPI_Scan is MPI_Sum, the result passed to each process is the partial sum
including the numbers on the current process.

MPI_Scan, upon further investigation, is not a true parallel prefix algorithm. It appears that
the partial sum from each process is passed to the process in a serial manner. That is, the message
passing portion of MPI_Scan does not scale as lg p, but rather as simply p. However, as discussed in
the Section 3.2, the message passing time cost is so small in large systems, that it can be neglected.


