
Support Vector Machines:

Algorithms and Applications

Tong Wen

LBNL

in collaboration with

Alan Edelman

MIT

Jan 17, 2003

Overview

� Support Vector Machines (SVMs) solve classification
problems by learning from examples.

� Contents:

1. Introduction to Support Vector Machines.

2. Fast SVM training algorithms.

3. Financial applications of SVMs?

� Notations:

�� the �th training point
�� the label of the �th training point
� the vector of Lagrange multipliers
�� the �th Lagrange multiplier
� the vector giving the normal direction of a hyperplane
� the bias term
� the dimension of a training point
� the number of training points
� the Hessian matrix
� the matrix whose columns are the training points
	 the matrix that spans the current search space

 the orthogonal complement of 	
�� the set of SVs that are correctly separated
�� the set of SVs that are separated with errors
���� a decision rule (function)

Introduction to Support Vector Machines

� An example.

� The primal SVM quadratic programming problem.

� The dual SVM quadratic programming problem.

� Properties of Support Vectors(SVs).

An Example

� The mechanism that generates each point � and its color
�:

P(y=−1)=0.5

P(y=1)=0.5

x

x

x
P(x | y=1)

P(x | y=−1)

� The main theme of classification is to determine a decision
rule:

� � � � �
� � � � � �

For this example, � � ������.

� What is the optimal solution to our detection problem?

An Example

� By Bayes’ Rule, the maximum likelihood decision rule is

������ � ���	�

�������

��� � � � ����

which minimize the risk

��� � ���
�

�
�� � �������

−2 −1 0 1 2 3 4 5

−1

0

1

2

3

4

5

m
−
=(1,1), m

+
=(3,3), σ=1

w

m
−

m
+

h(x)=−1

h(x)=1

Support Vector Machines

� The decision rule ������ depends on ���� ��.

� In general, statistical information such as ���� ��
is not available. A distribution-free approach is
needed.

� The SVM decision rule is determined based on
the training examples:

� � ����� ���� � � � � ���� �����

� The training error:

�	��� �
�

�

��

��

�

�
��
 � �������

� Overfitting vs. the training error.

Support Vector Machines

� In the previous example,

������ � �	
����� 	��

� Every decision rule geometrically corresponds to
a separating boundary.

� If
����� � � defines the separating boundary,
then the corresponding decision rule has a
general form

���� � �	
�
�������

� The SVM decision rule:

������� � �	
����� 	��

������� � �	
������� � 	�

� �	
�
��

��

�
��
��� � 	��

Support Vector Machines

� SVMs use two parallel hyperplanes instead of one
to determine the separating boundary. These two
(oriented) hyperplanes are computed directly
using the training set �.

w

d = 2 / ||w||

The Primal SVM QP Problem:
the Separable Case

� � and 	 are determined by the quadratic
programming (QP) problem:

�
����
��

�

�
�����

subject to

�
��
��
� 	� � �� for �� �� � � � ���

� We can always separate the training points by
mapping them to a higher dimensional space � �

�

(�� � �), such that in � �
�
the two sets ����
� � �
 �

�� and ����
� � �
 � ��� can be separated by
hyperplanes.

� In practice, people may not want to fully separate
the training set because of overfitting.

The Primal SVM QP Problem:
the Inseparable Case

� To accommodate the separation errors on �,
nonnegative slack variables (errors) �
 are
introduced:

�
����
����

�

�
����� � �

�

�

subject to (for �� �� � � � ��)

�
��
����
� � 	� � �� �
 and �
 � ��

� If the training point ���
� is correctly separated
by the soft-margin hyperplanes, then �
 � �.

� The coefficient � controls the trade-off between
the size of the gap and how well � is separated.

The Dual SVM QP Problems

� In practice, the dual problems are computed
instead:

������
�

��
��

�

�
����

subject to

��� � ��

� � ��

������
�

��
��

�

�
����

subject to

��� � ��

� 	 � 	 ��

� The Hessian matrix �
� � �
����
�
��������� is

a �
� symmetric positive semi-definite matrix.

The Positive Definite Kernel Functions

� Since only inner products are involved in the dual
problems, a positive definite kernel function ��� ��
is used instead of ����, where

�������� � �����
������ and ��� � �������������

� Using kernel functions avoids the curse of
dimensionality.

� Three positive definite kernels are used here:

linear: ���� �� � ���

poly(�): ���� �� � ����� ���

rbf(�): ���� �� � �������
�
�����

��

� For simplicity, we use �
 in place of ���
� in our
later discussions.

Support Vectors

� At optimality,

� �
��

��

�
�
�
�

and if � � �
 � � (�
����
� 	� � �) then

	 � �
 ����
 � �
��� ��
 ����

� ������� � �	
����� 	�.

� �� � �� contain the support vectors (SVs).�
� �� � �� �� � ��� �� � ���� ������� � �� � � ��� � ����
�� � � �� �� � ��� �� � ���� ������� � �� � �	 �� and �� � ���
�� � � �� �� � ��� �� � ���� ������� � �� � � ��� � ����

� SVs are the training points that determine the two
separating hyperplanes through linear equations.

� The solution to the dual problem is sparse.

Solving the Dual SVM QP Problem Efficiently

� Solving the dual problem is computationally
challenging.

� The decomposition strategy.

� A projected conjugate gradient algorithm.

� Speed considerations.

� Numerical experiments.

� Conclusion and future work.

The Decomposition Strategy

� The sparsity property.

� An observation from the primal problem point of view:

1 2

3

1

4

5

2

3

6

� How to apply this strategy to solve the dual problem
efficiently?

1. Constructing a subproblem.

2. Solving the subproblems.

3. The optimality conditions.

� A projected conjugate gradient algorithm.

Applying the Decomposition Strategy

� Projecting the dual QP problem onto a subspace.

– Let us restrict � in the affine space determined by ��

and � . That is, � � �� � � ��.

– The projected dual problem is

	�
�	���
��

������ 	 ���� ��� � �

�
���� ��� ��

subject to

��� �� � ��

�
 �� � � ��
 ��

where �� is the gradient of ���� at ��.

– � is a general matrix so far. It can be specified directly
or by its orthogonal complement �, where � �� � �.

� How to determine � or �, and how to solve each
subproblem?

Constructing a Subproblem

� �� �� � � ��.

� � �	 and � � �
 �� � �� ��

	�
�	���
��

������ 	 ������ � �
�
��� ����

subject to
��� �� � ��

�
 ��� � ��
 �,
where ��� � � ���, �� � � ��, �� � � ��� , etc.

� � � � �����

	
, � � �� and �� � � ��

	�
�	���
��

������ 	 ���� ���� � �
�
���� � ��� ��

subject to
�
 ��� � � ��
 �.

� �� is a �
 � matrix (�� �).

Solving the Subproblems by the CG Method

� If �
 ��� � � ��
 � never becomes active, we have

� � ��� �� � � �����

or equivalently

� ��� �� � ���� (� is symmetric)�

The CG iteration The simplified version

����� � �� 	��� � ����� ����� � �� 	��� � �����

��� � 	���
��� � 	���

� � �������������

�������� ���������
� � �������������

������� ��������

���� � ������ � �
���� ���� � ������ � �
����

	�� � 	���� � �� ���
���� 	�� � 	���� � �� ��
����

� � ���������

�������������
� � ���������

�������������

�� � 	�� � �
����
�� � 	�� � �
����

� How about �
 � ����� ��� ����
 � becomes active during
the iteration?

The Optimality Conditions

� An equivalent problem:

� � ��
�� and � � � ����������� �

� Define

� � ��

and

� � ���
�
����
���������

where � � ���� and � is a ��� matrix.

� � is optimal iff

� � � and � � ��

� Since ������� �

�
� �

��
� ��

���

	

���
� �

	
�����

	
�
	

�
, it is easy to

compute � and �.

� � ��

 ��

��

 ����

�

 ���

�

 � � ����

�
�

� Each time when active constraints are to be relaxed, we
start with the one that has the most negative �.

A Projected Conjugate Gradient Algorithm

� A summary of our algorithm:
�� ��

initialize ��;
while �
� � or � �

at most � steps of the CG iterations for the subproblem
update � and �:

� � �� ���� 	
���

�
����

� � � 	����� 	
���

�
����

relax at most � active constraints with the most negative ��;
update ��;
compute the columns of � corresponding to the relaxed constraints;
update ��� and ��;

end

� Memory requirement: (� is not precomputed!)

! � ���� � � � ��� and ��	�

� Flops:
Solving a sequence of smaller problems is cheaper when
the solution is sparse.

� Two parameters: � and ".

� How to initialize �	?

Speed Considerations:
Being Adaptive to the Memory Hierarchy

� A model of the modern computer memory hierarchy:

R
egister

 L2

cache

L1 cache

O
ther caches

Main

memory

Disk/

memory

Distributed

level clock cycles
register �
L1 cache �� �
L2 cache �� ��
near main memory �� ���
far main memory ���� ���
distributed main memory #�����
message-passing #�������#�������

� Linear algebra operations: level �� �.

� ATLAS BLAS.

� Thanks to MATLAB’s inclusion of ATLAS BLAS.

Speed Considerations:
Setting � and � Adaptively

� The spectrum of H.

– The size of 	� 	�.

– the convergence of the CG method.

� � is used to control the steps of the CG iterations.

– There is no need to compute every subproblem exactly.

– The rank deficiency of �.

� " is used to control the number of active constraints relaxed
at each time.

– When " active constraints are relaxed, ����� � � � ����
�!

is computed to generate the corresponding columns of
�.

– If " is set large, then there is more chance of some
previously relaxed constraints becoming active again.

� � and " is set to be ��, the estimated number of the leading
eigenvalues of �.

– In our algorithm, �� is set to be the number of iterations
for the CG method to reduce the residual norm to a
scale of ���� for the initial subproblem.

Numerical Experiments

� The two training sets:

Training sets Digit17 Face
Size of the training set 13007 31022
The positive training points 6742 2901
The negative training points 6265 28121
The dimension of the training points 784 361
The format of the training points sparse dense
Separability easier harder

� Comparing against���"
$�% (C) and SvmFu (C++).

� The choices of �	�
� and �:

Training sets: Digit17-���� and Digit17
l��� l����� p������ p��������

r������ r����� r���� r������
Training sets: Face-����, Face-����� and Face

l��� l��� l����� p����
p�������� r������ r����� r����

Numerical Experiments

Using Default Settings Using Estimated Optimal Settings

l(1) l(0.1) p2(0.1) p2(0.001) r10(10) r10(1) r3(1) r3(0.1)
0

5

10

15

20

25

30

35

40

45

50
Digit17−6000

C
P

U
 s

ec
on

ds

kernel (c)

FMSvm
SVMlight

SvmFu

l(1) l(0.1) p2(0.1) p2(0.001) r10(10) r10(1) r3(1) r3(0.1)
0

5

10

15

20

25

30
Digit17−6000

C
P

U
 s

ec
on

ds

kernel (c)

FMSvm
SVMlight

SvmFu

l(4) l(1) l(0.1) p2(0.1) p2(0.001) r10(10) r3(10) r3(1)
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Face−6000

C
P

U
 s

ec
on

ds

kernel (c)

FMSvm
SVMlight

SvmFu

l(4) l(1) l(0.1) p2(0.1) p2(0.001) r10(10) r3(10) r3(1)
0

100

200

300

400

500

600

700
Face−6000

C
P

U
 s

ec
on

ds

kernel (c)

FMSvm
SVMlight

SvmFu

Numerical Experiments

Comparison of FMSvm with 	
������ and SvmFu with the estimated
optimal parameter settings

l(1) l(0.1) p2(0.1) p2(0.001) r10(10) r10(1) r3(1) r3(0.1)
0

5

10

15

20

25

30
Digit17−6000

C
P

U
 s

ec
on

ds

kernel (c)

FMSvm
SVMlight

SvmFu

l(4) l(1) l(0.1) p2(0.1) p2(0.001) r10(10) r3(10) r3(1)
0

100

200

300

400

500

600

700
Face−6000

C
P

U
 s

ec
on

ds

kernel (c)

FMSvm
SVMlight

SvmFu

l(1) l(0.1) p2(0.1) p2(0.001) r10(10) r10(1) r3(1) r3(0.1)
0

10

20

30

40

50

60

70

80

90
Digit17−13007

C
P

U
 s

ec
on

ds

kernel (c)

FMSvm
SVMlight

SvmFu

l(4) l(1) l(0.1) p2(0.1) p2(0.001) r10(10) r3(10) r3(1)
0

200

400

600

800

1000

1200
Face−13901

C
P

U
 s

ec
on

ds

kernel (c)

FMSvm
SVMlight

SvmFu

l(4) l(1) l(0.1) p2(0.1) p2(0.001) r10(10) r3(10) r3(1)
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Face−31022

C
P

U
 s

ec
on

ds

kernel (c)

FMSvm
SVMlight

SvmFu

Conclusion and Future Work

� Conclusion:

1. efficient;

2. easy to use;

3. highly portable.

� Future work:

1. Try FMSvm on more training problems and platforms.

2. Improve FMSvm’s performance and understand better
its convergence behavior.

Applying SVMs to Financial Markets

� Identifying problems:

– A mathematical model is available, but only an
approximation.

– Decisions are made based on experience.

� Constructing training sets:

– Domain knowledges.

– Data are from different categories.

– Scaling the training data.

� Using SVMs to predict the movement of Dow Jones
Industrials Average Index (DJIA):

– The geometric Brownian motion solution.

– The SVM solution.

– The comparison between the two solutions.

� Conclusion and future work.

The Geometric Brownian Motion Model

� The weak form of the market-efficiency
hypothesis.

� The equations:

�� � ����� �����

By Itô’s lemma, we have

� �
� � ���
��

�
���� ����

That is,

�

��

��
 �����

��

�
��� �����

� We want to predict on Thursday (after the
market is closed) whether or not the closing index
of DJIA on Friday is higher than its opening index
on Monday.

The Dow Jones Industrial Average Index

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02
0

2000

4000

6000

8000

10000

12000

Year

D
ow

 J
on

es
 In

de
x

The Dow Jones Index (02−Dec−1985 to 28−Dec−2001)

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02
10

3

10
4

10
5

Year

D
ow

 J
on

es
 In

de
x

The Dow Jones Index Plotted in the Logarithmic Scale

The Geometric Brownian Motion Solution

� The geometric Brownian motion model:

�	

	
� ��%� ��&�

� Its discrete-time version:

�	

	
� ��%� �'

�
�%�

�	

	
� (���%� ���%��

� Stock price on Friday: �� � �������

���
� (��� ����

		
 � �����	��

� ��� �� �'�	���

� We want to know 		

�
�
	�.

'
)

*

	�+	�� � �� �

�
� ,�

� Since

�
���') ,�) ���' * ,� if , * �

���') ,� * ���' * ,� if ,) ��

�����,� � �!��,��

The Geometric Brownian Motion Solution

� Estimating � and �: only � matters.

90 91 92 93 94 95 96 97 98 99 00 01 02
−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time

E
st

im
at

ed
 D

ai
ly

 R
et

ur
n(

%
)

Estimated Daily Returns on Fridays (07−Dec−1990 to 28−Dec−2001)

l=25
l=100
l=300

� The test set: December 7, 1990 to December 28, 2001.

� The performance: �� errors out ��� trials. The accuracy
of ���� on this test set is "����#.

The SVM Solution

� ������� � �!���� �, where “experience” is
incorporated in and .

� Our first training set: July 5, 1954 to November 30,1990.

�� ���� ��� ��� ���� ��� � � � ���� ��� ��� ���� ������

� Scaling the raw training vectors:

�� � �� ����� ����� ����� � � � � ����� ����� ����� ����� �������

� Results: (There are totally �$�� training vectors, and the
test set contains ��� vectors.)

poly(4)
� 0.2 0.5 0.8 1 1.2 1.4 1.6

Errors 106 99 96 96 96 98 97
rbf(1)

� 20 40 60 80 100 120 140
Errors 109 101 101 98 96 96 99

The SVM Solution

� Our intuition is that if there is any available information cor-
related to the movement of DJIA, then adding it to the train-
ing set may improve the performance.

� We add the daily federal funds rate to the training set. We
choose this rate simply because it is a daily rate.

� Again, we use the relative values with respect to the
Monday rate in the training vectors, instead of real rates.

� Results:

poly(3)
� 0.05 1 1.5 2.5 10 20 30 35

Errors 103 102 96 96 94 93 89 89

� When � � ��, it takes around ��� hours (on newton.mit.edu)
to train the SVM comparing with the scale of seconds when
using the old training set.

The Geometric Brownian Motion Model VS. SVMs

� The Geometric Brownian Motion model is only an
approximation.

� The semi-strong form of the market-efficiency
hypothesis.

91 92 93 94 95 96 97 98 99 00 01
0

5

10

15

Year

N
um

be
r

of
 E

rr
or

s

h
GBM

 vs. h
SVM

h
GBM

h
SVM

Conclusions and Future Work

� Conclusions:

1. SVMs can learn well from time series data.

2. There are potentials to achieve better performance
using SVMs.

� Future work:

1. We want to find good applications of SVMs
(need domain knowledge).

2. How to construct a training set based on data from
different categories is also an interesting problem.

