
Parallelizing Incremental Bayesian Segmentation (IBS)

Joseph Hastings <jrh@mit.edu>

Siddhartha Sen <sidsen@mit.edu>

May 19, 2003

Abstract

This paper reports on two approaches to parallelizing the IBS algorithm. One approach uses
MPI while the other uses Cilk. Both methods were able to achieve a linear speed up when 2 pro-
cessors were used, but suffered diminishing returns for more than 2. We present a mathematical
derivation of IBS and then discuss the two approaches, commenting on the ease of programming
as well as various obstacles we encountered along the way. We conclude that neither MPI or
Cilk really achieve their goals of making parallel programming easy for the programmer.

1



Contents

1 Introduction 4

1.1 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 4

2.1 Bayesian Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 The Markov Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Bayesian Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Off-line and On-line Model Selection . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 Partitioning and Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.3 Executions and Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 An Optimal Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Maximum Likelihood Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.2 Bayesian Paramteter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.3 A Bayesian Approach to Model Evaluation . . . . . . . . . . . . . . . . . . . 9

2.5 Bayesian Clustering by Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Evaluating a clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.2 Generating a Space of Potential Models . . . . . . . . . . . . . . . . . . . . . 13

2.5.3 Complexity and Effectiveness of BCD . . . . . . . . . . . . . . . . . . . . . . 13

2.6 IBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.1 IBS Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.2 Structure of IBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.3 Break Point Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.4 IBS Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.5 IBS Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Code Overview 16

3.1 High-Level Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Parallelizable Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Methods of Parallelization 18

2



4.1 MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Cilk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Cilk Version 19

5.1 Code Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 Adaptive Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 MPI Version 23

6.1 Code Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1.1 Marshalling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1.2 Main Control Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1.3 check out process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Conclusion 26

7.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3



1 Introduction

This paper discusses an attempt to parallelize the IBS (Incremental Bayesian Segmentation)[1]
algorithm. The algorithm was recently developed in order to classify temporal patterns in discrete
medical data. It is intended to provide an alternative to Hidden Markov Model learning. Currently
HMMs are widely used but are computationally expensive to train. This limits their effectiveness
for real-time pattern recognition. We discuss two different approaches to parallelizing IBS: an
MPI-based application and Cilk-based application. It is hoped that such applications may help to
provide researchers with a viable tool for real-time pattern classificaion.

1.1 Organization

Section 2 develops the mathematics behind IBS. Section 3 discusses the implementation of IBS.
Section 3.3 discusses the data-sets used to evaluate the performance of the MPI and Cilk versions
of IBS. Section 4 gives a basic overview of MPI and Cilk. Section 5 describes the details of the
Cilk version of IBS along with its performance on the test sets. Section 6 discusses the MPI
implementation and results. Section 7 concludes with an analysis of the resuls and a list of lessons
learned from this project.

2 Background

This section is organized as follows: we first discuss Bayesian Segmentation algorithms in general
and the problem they attempt to solve. We next discuss Markov processes and the subset of
Bayesian algorithms that attempt to learn them. We then discuss an optimal version of IBS as well
as the BCD algorithm that it approximates. Finally we discuss the mathematics used in IBS.

2.1 Bayesian Segmentation

The IBS algorithm is part of a family of Bayesian Segmentation Algorithms that aim to describe
a time-series of data in terms of generative probability distributions. In general these algorithms
classify various pieces of the time-series as being generated by distinct time-invariant distributions.
In other words, they view the sequence as being characterized by a set of time-invariant distributions
as well as a state variable that picks which distribution is active at any given moment. In general,
any number of different distributions may be used to generate the series. In addition, the portions
generated by each distribution may be interleaved in an arbitrary manner. Their goal, given a time-
series, is to produce a set of distributions as well as the break-points where the driving distribution
switched between members of the set.

The time-series of data can be modeled as a set of random variables X1, X2, ...XN where Xi ∈
{1, 2, ..., s}. A particular model Mc describes how the Xi’s are related. Mc is a set of discrete
probability distributions, as well as a mapping from intervals in the time-series to members of the
set. To give an example, a time-series with 5000 elements may be modeled as being generated
by 5 different distributions that each produced intervals of length 1000. Alternatively, it could be
modeled by a set of 2 distributions that alternated producing intervals of length 100. The purpose

4



of a Bayesian Segmentation Algorithm is to generate a set of candidate models and to evaluate
them according to some criteria, in an effort to provide a best estimate of the underlying model.

A model Mc provides a mechanism for determining Xi. We adopt the notation that actual values
from the sequence are represented as xi. We use the shorthand notation p(xtj) to mean Pr{(Xt =
j)}. To avoid confusion between the time-series and the random variables representing the time-
series, we use the letter S to represent the actual data as a sequence S = {Si} where Si ∈ {1, 2, ..., s}.
The variable s represents the number of discrete states present in the time-series. Without loss of
generality, the sequence can be encoded using the integers between 1 and s. Si and xi both refer
to the ith element of the time-series although Si views this number as a part of the sequence while
xi views the same number as a sample from the random variable Xi.

2.2 The Markov Property

In full generality each Xi could have a different distribution. Furthermore, Xi could depend on all
previous values of Si (xi). However, in IBS and related algorithms, we limit our models to those
that impose the Markov property on the X’s. The Markov property states that the probability
distribution Xt depends only on the previous k values {xt−1, xt−2, ..., xt−k} for some value of k. The
value k is called the Markov Order of the series. The first major division of Bayesian Segmentation
Algorithms is between those that consider k = 1 and those that consider arbitrary values of k. IBS
is part of the subset that only allows for k = 1, a condition that is typically called Markovian.
When k = 1 the resulting distribution is called a Markov chain. Therefore, for the remainder of
the paper, the Xi’s will be assumed to form a Markov chain. However, as IBS allows for a set of
generative distributions, an additional parameter θ is necessary in order to specify which of the
chains is used to generate a particular Xt. For IBS, the Markov condition on the Xi’s is equivalent
to:

∀t > 0, p(Xt = j|(x0, x1, ...xt−1),
−→
θ ) = p(Xt = j|xt−1, θt−1). (1)

The vector
−→
θ denotes which member of the set of distributions is used at any point in time. Note

that on the right hand side, the probability only depends on θt−1. The term t− 1 is used in place
of t because this probability is viewed as a state transition probability for time t that is the result
of the state of the model at time t − 1. Rephrasing Mc in terms of the Markov property means
that Mc is a set of Markov probability distributions, which can each be represented as a transition
probability matrix. For any pair of values i and j, the probability of the Markov chain moving
from state i to state j is given by the [i][j] member of the matrix and is time-invariant. We view
Mc as an array of matrices indexed by θ. Therefore:

p(Xt = j|xt−1,
−→
θ ) =Mθt−1

[xt−1][j]. (2)

Note that in this interpretation of Mθ the rows sum to one and have non-negative components.
For the remainder of the paper we will ignore the subscript of θ and treat the model Mc as if
it includes the necessary information encapsulated in

−→
θ . We can write the formula above as

p(xtj) = Mc[xt−1][j]. The role of a Bayesian Segmentation Algorithm is therefore to produce Mc

given a time-series S.

5



2.3 Bayesian Model Selection

Given the constraint on Mc that the Xi’s be Markovian, we view the universe as consisting of
some set M of Markov processes and an oracle that chooses when and for how long each process
is allowed to generate samples. Bayesian segmentation algorithms attempt to find some set of
matrices M̂ that approximate the true set M , as well as to define the break-points produced by
the oracle. From a statistical point of view, Mc is an estimate of the true set of distributions M ,
and traditional statistical techniques can be employed.

2.3.1 Off-line and On-line Model Selection

A Bayesian approach to this model selection problem compares two possible models M1 and M2

in terms of their likelihood given the data. We use the informal notation p(Mc|S) to mean the
likelihood of the particular setMc given the sequence of observations S. In general these algorithms
can be grouped into off-line and on-line versions. Off-line variants are allowed to consider the entire
sequence S of data while on-line variants attempt to approximate the solution by incrementally
considering new data. Both types of analysis will be necessary in order to fully explain IBS. IBS is
the on-line approximation to Bayesian Clustering by Dynamics (BCD), which is an off-line Bayesian
Clustering Algorithm. The term clustering in place of segmentation indicates that multiple segments
in the time-series may be mapped to the same underlying probability distribution. Therefore Mc

is viewed as a clustering of the time-series, as it describes a set of distributions and the (possibly
disjoint) intervals that each distribution was allowed to generate.

We now develop the theory behind IBS by starting from the intractable optimal solution, moving
towards BCD, the off-line approximation, and finally, towards IBS as an on-line approximation to
BCD.

m111 m112 … m11s 
m121 m122 … m12s 

…   …  …  …

m1s1 m1s2 … m1ss 

…    …   …   …

…  (N total)   …

…    …   …   …

mN11 mN12 … mN1s
mN21 mN22 … mN2s 

…   …  …  …

mNs1 mNs2 … mNss

M =

oracle

S

m111 m112 … m11s 
m121 m122 … m12s 

…   …  …  …

m1s1 m1s2 … m1ss 

…    …   …   …

…  (N total)   … 

…    …   …   …

mN11 mN12 … mN1s
mN21 mN22 … mN2s 

…   …  …  …

mNs1 mNs2 … mNss

^ ^ ^

^ ^ ^

^ ^ ^

^ ^ ^

^ ^ ^

^ ^ ^

(ma,lengtha)

(ma,lengtha)

...

IBS ^ ^ ^

^

Figure 1: An oracle produces S using the set M of Markov matrices. IBS attempts to segment S
and reverse-engineer M .

6



2.3.2 Partitioning and Clustering

AmodelMc (along with the information encoded in
−→
θ ) defines a partitioning of S. The partitioning

of S maps each element to an equivalence class identified by the corresponding element of
−→
θ . The

vector
−→
θ will have between 1 and N distict elements, depending on how many equivalence classes

are used. In general, we use the term partitioning to think of the abstract notion of dividing S
into equivalence classes and the term clustering to refer to the process of learning a particular

−→
θ

in terms of the break-points generated by the oracle. We call a subsequence of S with identical
values of θ an execution of the Markov process encoded in the θth matrix. We use the notation Sθ

to indicate the subsequences of S associated with the execution encoded by θ.

2.3.3 Executions and Clusters

We will soon characterize the behavior of an execution in terms of the state transitions that it
contains. However, we also need to include the transition between the last member of an execution
and the first member of the next execution (if it is not the last member of S). That is, at the point
at which the oracle chooses a new matrix, the value of θ changes. However, the transition between
the previous state and the new state depends on the old value of θ. Similarly, an execution does not
contain a transition into its starting state. We amend the definition of Sθ slightly to include the
boundary-case conditions. In order to specify that the transition into a state is included, but not
the transition out of that state, Sθ contains a 0 after the first element of the next execution. Also,
the subsequences from each of the separate executions with the same θ are concatenated (separated
by the 0 indicating not to include the transition into or out of the 0). Therefore Sθ is a sequence
that specifies the same set of transitions as all of the executions mapped to θ.

The term clustering was defined above to refer to the information encoded by
−→
θ . A cluster is

defined to be a set of executions related by having the same value of θ. Bayesian Clustering
Algorithms are a subset of Bayesian Segmentation algorithms in which the oracle is allowed to
return to a previous matrix rather than always generating new matrices for each execution. In the
diagram below, A,B, ...,H are executions, and (AB) is also an execution. In this case there are 3
equivalence classes. Vieweing the model Mc as generating S, we call A,B,D,G a cluster and C,E
another cluster. Sθ1 would be the sequence containing A then B, followed by the first element of
C and then a 0. The next element would be the first element of D. After the first element of E a 0
would follow and the next element would be the start of G. Sθ1 would conclude with the end of G.

2.4 An Optimal Clustering Algorithm

In principle, we could generate all possible partitions of S. There are g(n) of them and each one
implies a particular Mc (along with the corresponding

−→
θ ). We could then select the best model

through an exhaustive search. However, the total number of ways to partition S is related to the
Stirling numbers of the second kind and is given by:

g(n) =
n∑

k=1

1

k!

k−1∑

i=0

(−1)i
(
k

i

)

(k − 1)n (3)

7



This quantity (3) is known to be super-polynomial and BCD is an attempt to greatly reduce the
search space. However, before we discuss BCD, we will provide a mathematical framework for
comparing two possible models in terms of their likelihood given the sequence. We first need to
describe how to generate Mθ given the cluster of executions encoded with θ. Next, we describe
how, given two alternative sets of matrices M1 and M2, we decide which is a better model for S.
An optimal algorithm would apply the equations developed in the next section to every possible
partition, and choose the globally optimal set of matrices.

A B C D E

1 1 2 1 2
S

M1 M2

partitioning

{A, B, D, G} {C, E}

clustering

F

3

G

1

H

3

M3

{F, H}

Figure 2: Partitioning of S into three equivalence classes.

2.4.1 Maximum Likelihood Matrix

In order to solve the clustering problem optimally, we first need to solve the problem of generating
the optimal matrix in order to best describe the executions that it generated. To rephrase, we need
a process for finding the matrix with the maximum likelihood of generating the executions that
it has been assigned by a particular partitioning. For example in the example above, we need to
generate the M2 that would be most likely to generate the executions C and E.

Based on the Markovian assumption, the maximum likelihood estimate described above depends
only on the transitions that occur in the sequence (along with the edge-cases as described in the
definition of an execution). These transitions can be stored in a count matrix which is an s×smatrix
Nθ in which nij is the number of times that Sθt−1

= i and Sθt = j in the execution (correctly parsing
the 0’s artificially inserted as described above). Another implication of the Markov assumption is
that the storage required for a cluster depends only on s2 and not on the number of transitions
(assuming that none of the entries would overflow).

It is a well known result that the optimal transition probability matrix for generating a particular
count matrix is formed by normalizing each of the rows. Equivalently:

P̂ = (p̂ij) =
nij

∑

j

nij

. (4)

8



For example, if s = 5, C = 1, 2, 3, 4, 5, 1 and E = 5, 1, 3 then:

1 2 3 4 5
1 0 2 1 0 0
2 0 0 1 0 0

NAC = 3 0 0 0 1 0
4 0 0 0 0 1
5 1 0 0 0 0

1 2 3 4 5
1 0 2/3 1/3 0 0
2 0 0 1/1 0 0

⇒ P̂AC = 3 0 0 0 1/1 0
4 0 0 0 0 1/1
5 1/1 0 0 0 0

2.4.2 Bayesian Paramteter Estimation

We can extend this formula to include prior knowledge of the probabilities for each of the tran-
sitions in the traditional Bayesian manner. This will also prevent us from generating 0’s in our
matrices. Having a probability matrix with 0’s is troublesome because we do not know if the oracle
will eventually provide a sequence that would be classified using a 0-probability transition. We
incorporate prior knowledge by creating a hypothetical time-series of length α + 1 in which the α
transitions create a hypothetical count matrix with entries αij . Our count matrix N is now formed
by adding αij to each of the entries. Our new estimate for P is known as the Bayesian estimate
and has:

P̂ = (p̂ij) =
αij + nij

∑

j

(αij + nij)
. (5)

Suppose that for our example we use a uniform prior with every αij = 1. Our modified count table
would be:

1 2 3 4 5
1 1 3 2 1 1
2 1 1 2 1 1

NAC +Nα = 3 1 1 1 2 1
4 1 1 1 1 2
5 2 1 1 1 1

1 2 3 4 5
1 1/8 3/8 2/8 1/8 1/8
2 1/6 1/6 2/6 1/6 1/6

⇒ P̂AC = 3 1/6 1/6 1/6 2/6 1/6
4 1/6 1/6 1/6 1/6 2/6
5 2/6 1/6 1/6 1/6 1/6

The α’s are known as hyper-parameters and they are viewed as free parameters for the algorithm.
In practice they would most likely vary with time as they tend to over-damp probability estimates
by continually over-estimating low-probability events. If the count matrices ever become completely
dense the priors may be abandoned completely. Although decisions regarding the hyper-parameters
are important for the machine learning aspects of IBS, they are not relevant for the parallelization
analysis and will not be discussed further.

2.4.3 A Bayesian Approach to Model Evaluation

Using the formulas we derived above, we could define an optimal clustering algorithm in which
we generate each of the possible clusterings, used the count matrices to generate the transition

9



probability matrices, and then evaluate the likelihood of the model. We now develop a formula for
performing this evaluation. The first step applies Bayes rule:

p(Mc|S) =
p(Mc)p(S|Mc)

p(S)
. (6)

The denominator p(S) is constant for each of the perspective models and we therefore find the
optimal clustering by maximizing p(Mc)p(S|Mc). p(Mc) is a measure of our a priori probability
for the particular clustering Mc. In general we have no particular reason to favor one model over
another, although separate families of Bayesian algorithms treat this term as variable with various
metrics for choosing between models. In our case we can treat this term as a constant for each
model and focus on maximizing p(S|Mc). Applying (5) we have that the optimal model maximizes:

p(S|Mc,−→α ) =
∏

θ

∏

t∈tθ

P̂θ[St][St+1]. (7)

While mathematically correct, the above formulation is subject to underflow as the result of mul-
tiplying many small numbers. As the result, the sum that is actually maximized is:

l(S|Mc,−→α ) =
∑

θ

∑

t∈tθ

log(P̂θ[St][St+1]). (8)

In principle we could enumerate all possible partitions of S and evaluate (8) for each partition,
choosing the best possible Mc. However, as mentioned above, the number of partitions of S grows
extremely quickly and this would be intractable. We now discuss the BCD algorithm which is an
approximate solution to this optimization problem.

2.5 Bayesian Clustering by Dynamics

BCD operates in two phases. In the first phase a break-point detection algorithm is applied to S.
The algorithm itself is not specified by BCD, but a particular variant used in IBS will be discussed
in (2.6.3). In practice a number of different methods would be used, perhaps starting with a
naive uniform partition and then using results of the previous iteration to guide the break-point
detection. This algorithm partitions S in a linear fashion, that is, forming clusters that consist of
a single execution. In the language of BCD these initial clusters are called segments. The initial
break-point detection breaks S into c segments for some c¿ N . The segments are each stored in
a count matrix, with the possible addition of priors.

The second phase of BCD takes a set of segments and attempts to form an optimal set of clusters
by combining sets of segments. In other words, it modifies the

−→
θ vector by taking segments with

different values of θ and assigning them the same value. This process is known as subsumption and
has the property that the count matrix of the subsumed cluster is the sum of the two count matrices
for each of the original clusters. In practice

−→
θ is not stored explicitly as only count matrices are

ever needed for the actual computations.

10



The process of combining segments to form clusters is agglomerative, meaning that segments are
never broken apart but can be subsumed together. Finding the optimal agglomeration of segments
into clusters forms a much smaller solution space than the set of all models considered in the
optimal algorithm, but is again intractable. BCD uses a heuristic search through the space of
possible subsumptions to find an approximately optimal solution.

The heuristic search described above has three important components: a metric for evaluating
whether a particular subsumption improves the model, a method of generating potential pairs to
subsume, and a termination condition. Various choices for these criteria give rise to a family of
related algorithms. We discuss the choices made by BCD with an emphasis on applicability to IBS.

2.5.1 Evaluating a clustering

As in the optimal algorithm described above, the parameter being optimized in BCD is l(S|Mc).
However, rather than evaluating all possible models, this score is used to incrementally improve the
clustering. Given the current set of clusters Mc = {M1,M2, ...,Mc} the algorithm tests whether
some particular pair of clusters Mi and Mj should be combined into Mij . The clusters Mi and Mj

are subsumed if:

l(S| {M1, ...,Mij , ...,Mc}
︸ ︷︷ ︸

c−1

)
?
> l(S| {M1, ...,Mi, ...,Mj , ...,Mc

︸ ︷︷ ︸

c

}) (9)

The derivation of l(S|Mc) is given in [1] and will be summarized below. First, for clarity, we define
the following:

Expression Meaning

S ≡ {S1, ..., Sk, ..., Sc} having same transitions

Sk 7→ Nk 7→ P̂ k cluster produces counts and a Markov matrix
αkij = αij in cluster k
nkij = nij in cluster k

αki =
∑

j αkij row precision in cluster k

nki =
∑

j nkij occurrences of i in cluster k

mk =
∑

i nki = |Sk| length of cluster k
m =

∑

k mk = |S| length of S
α =

∑

k αki global precision
C = {C1, ..., Cm}, Ci ∈ {1, 2, ..., c} Ci = j if Si is a member of cluster j

C is a hypothetical vector specifying the cluster membership of each element of S and is the same
as the

−→
θ vector from the previous section. The quantity α is called global precision and represents

the influence of the prior estimates on the probabilities. The remainder of this paper assumes that
the αkij follow a Dirichlet distribution, which is discussed in [4]. Equivalently, referring back to
(1), we say that p(Xt = j|xt−1) is conditionally independent of t given Ct−1. In other words, Ct−1

can be viewed as a state variable, specifying which model to use to generate Xt given xt−1.

This observation encourages us to express p(S|Mc) as a function of S and C, which we can do as
follows:

11



@
@
@R

Xt
- vv

vC
'

&

$

%
Xt−1

Figure 3: Xt−1 and Xt are Conditionally Independent Given Ct−1.

p(S|Mc) = f(S,C)g(S,Xt−1, Xt, C). (10)

Where:

f(S,C) =
Γ(α)

Γ(α+m)

c∏

k=1

Γ(αk +mk)

Γ(αk)
. (11)

This expression comes from the assumption that the lengths of clusters obey a Beta distribution.
Note that this expression does not depend on actual values within S but only on the number and
relative lengths of the clusters. Treating the α’s as a Dirichlet probability distribution, this term
gives the a priori likelihood that the sequence would be partitioned in k clusters each with length
mk. Alternatively, this can be viewed as a penalty term that discourages S from being overly
partitioned. In this light, this term is an application of Occum’s razor, causing BCD to favor the
smallest number of free parameters that adequately describe the sequence.

g(S,Xt−1, Xt, C) =
c∏

k=1

s∏

i=1

Γ(αki)

Γ(αki + nki)

s∏

j=1

Γ(αkij + nkij)

Γ(αkij)
. (12)

Here the first product is over the set of cluster, the second is over the rows of the associated
count matrices, and the third is over each of the entries in that row. This formula comes from the
assumption that the parameters in the c Markov matrices follow Beta distributions and was first
constructed in [?].

Note that if we set all of the prior estimates to 0, this would reduce to:

g(S,Xt−1, Xt, C) =
c∏

k=1

s∏

i=1

s∏

j=1

Γ(nkij)

Γ(
∑

j nkij)
(13)

This equation looks very similar to the formulation of P̂k except that the entries are normalized using
the Gamma function. This expression comes from the assumption that the transition probabilities
within each row obey a Beta distribution.

Now, given two particular models, we can evaluate their likelihood solely on the basis of the priors
and the generated count matrices. The equations above are converted into their log form for actual
numerical computation. This conversion introduces the log-gamma function, lgf leading to:

12



lf(S,C) =
lgf(α)

lgf(α+m)

c∑

k=1

lgf(αk +mk)

lgf(αk)
. (14)

lg(S,Xt−1, Xt, C) =
c∑

k=1

s∑

i=1

lgf(αki)

lgf(αki + nki)

s∑

j=1

lgf(αkij + nkij)

lgf(αkij)
. (15)

l(S|Mc) = lf(S,C) + lg(S,Xt−1, Xt, C). (16)

2.5.2 Generating a Space of Potential Models

In BCD the calculation of l(S|Mc) is performed on only a subset of all possible models. Given an
initial clustering, it calculates a pair-wise distance between each pair of distributions and builds a
sorted list of all such pairs. The first two entries have the globally smallest distance, and every pair
after the first is the pair of matrices with the next lowest distance. Note that each matrix appears
c− 1 times in this list. The distance used by BCD is based on the Kullback-Liebler distance:

d(p1, p2) =
s∑

i=1

p1i log
p1i

p2i

(17)

This equation is not necessarily symmetric, but can me made into a valid metric by calculating:
d(p1,p2)+d(p2,p1)

2 . BCD walks along the sorted list and tests whether subsuming the first two matrices
would produce a better score according to (16). If the matrices are subsumed, it then re-scans the
list removing the original matrices and merging in pairs including the newly created matrix. If the
resulting score of the subsumption is lower, it moves to the next pair. BCD terminates when it
does not find any pair that can be subsumed to increase the score.

2.5.3 Complexity and Effectiveness of BCD

The BCD algorithm as described involves several important decisions. First, the method of choosing
an initial partition is extremely important. Additionally, if a particular number of clusters is desired,
this initial partition can be chosen to optimally partition the space. In many cases, if clusters are
short, they will be subsumed with nearly any other short cluster, meaning that the order that this
space is searched can have a large effect on the final clustering. Finally, the choice of priors and
their relative weights can bias the algorithm towards particular ends of the solution space. In [1]
the authors point out that uniform priors encourage clusters to be subsumed into a single cluster,
despite the intuitive notion that they are uninformative. They also prove that the time complexity
of the algorithm is O(c4s2) where s is the number of total unique states and c is the number of
initial clusters. However, this time does not include the initial segmenting which is non-trivial in
practice. The IBS algorithm is an attempt to approximate the behavior of BCD while operating in
an on-line fashion, meaning that the average incremental work required when given a new sample
from S is O(1).

13



2.6 IBS

2.6.1 IBS Motivation

Unlike the optimal clustering algorithm and BCD, the IBS algorithm attempts to operate on an
infinite sequence of data. Rather than viewing S as a data-set, it views the sequence as samples
from some infinite process. In addition, the samples are generated at a particular time frequency
such that IBS must be able to completely process a state transition before receiving the next data
point. In principle a buffer could be employed to smooth any temporal variations in processing
speed, but this buffer must be finite. While BCD was given the task of explaining S by some
agglomerative combination of given clusters, IBS is responsible for both segmenting the series and
then grouping the segments into related clusters.

The motivation behind IBS is rooted firmly in a Bayesian view of the world. If the oracle producing
the infinite sequence has a finite set of time-invariant Markov processes, and he uses a time-invariant
probability distribution to choose the order in which the processes execute, and the execution
time itself can be produced according to a time-invariant probability distribution, then maximum
likelihood estimates for each of those parameters have a logical interpretation. Unfortunately, it
is not feasible to allow all of those parameters to range over arbitrary values. Instead IBS relies
on a priori estimates for each of the parameters. In particular, they are all assumed to follow
some Beta distribution. Taking each of these priors, and assuming that all parameters follow a
Beta distribution with Gaussian noise, IBS formulates a Bayesian model selection problem that
attempts to find the best explanation for the observed sequence. As discussed in the summary of
BCD, even intuitively uninformative priors, such as a uniform distribution over possible values, can
strongly bias the predictions made by a Bayesian process. A frequentist objection to this algorithm
is that the implicit assumptions hardcoded into the formulations prevent its output from having
any particular meaning. However, rather than debating the philosophy of the problem, we move
on to its theory and implementation.

2.6.2 Structure of IBS

IBS consists of several tiers of nested loops. At the highest level, it processes samples from the
infinite sequence and runs a break-point detection algorithm. Each time it decides that it has
reached a break-point, it attempts to classify the segment of transitions between the previous
break-point and the current point. This classification must consider subsuming the latest segment
into each of the previous clusters. In addition, it must test the likelihood that the segment has come
from a previously unobserved process. In theory, if the number of distinct processes were known,
or conjectured, the probability that a new segment is novel could be made conditional over all of
the finite values for the number of processes. However, in general, it is difficult to paramaterize
this distribution. A further complication is whether we believe that the probability of seeing a new
cluster is constant or decreases with time. If the oracle is indeed using a time-invariant method
of choosing which process to execute then intuitively this should be a decreasing function and we
should adjust our likelihood score. Unfortunately these second-order effects are not completely
debugged in IBS and are not included in the version that was used to parallelize the code.

In general, without making assumptions about the distinct probability distributions used by the
oracle, it is difficult to know whether the distance between two estimated probability distributions

14



is due to a fundamental difference in the driving process or in sampling variation. The current
version of IBS assumes that the set M of matrices is generated at random to uniformly sample the
space of all s dimensional matrices. This issue is addressed further in section (3.3).

2.6.3 Break Point Detection

The outer loop of IBS runs a break-point detection algorithm designed to divide the time-series into
segments that are then classified into clusters. The break-point algorithm works by accumulating
the cumulative probability of the sequence and breaking when it exceeds certain bounds. The
bounds are based on the expected value of the cumulative probability, conditional on the assumption
that the probabilities being used are correct. If the oracle chooses a new matrix and this assumption
is no longer correct, the difference between the assumed (old) distribution and the new distribution
will cause the score to quickly exceed its bounds. The speed with which it exceeds those bounds is
based on the average distance between matrices in M .

At each transition three variables are updated: the actual cumulative probability, the estimated
expected value of this probability, and the estimated variance of this quantity. A break point occurs
when the actual cumulative probability deviates from the expected value by more than β standard
deviations. This algorithm depends on several parameters and assumptions, which are discussed
below.

The first consideration in the break-point detection is how to estimate the probability of a particular
transition. This choice is made by building a count matrix for the current segment, including a
hypothetical sequence of priors, and using (5). For each transition, the corresponding entry in
the P̂ matrix is used as an estimate of the probability of that transition occurring. A variable
known as score is updated by adding the log of P̂ [xi−1][xi]. score is known as the log-likelihood of
the sequence, although the fact that P̂ changes at every point makes this a slight deviation from
the normal definition. Simultaneously, we calculate the expected value of this parameter, using
the basic definition of expectation shown below. Similarly we calculate the variance. These three
parameters are defined as follows:

c = −log(P̂t−1[xt−1][xt]) (18)

E[c] =
∑

j

p(cj)cj = −1 ·
∑

j

(P̂t−1[xt−1][j]) · log(P̂t−1[xt−1][j]) (19)

var(c) =
∑

j

p(cj)(cj − E[c])2 =
∑

j

(P̂t−1[xt−1][j]) · (−log(P̂t−1[xt−1][j])− E[c])
2

(20)

scoret = −1 ·
t∑

i=1

log(P̂i−1[xt−1][xt]) (21)

meant = −1 ·
t∑

i=1

s∑

k=1

P̂i−1[xt−1][k] · log(P̂i−1[xt−1][k]) (22)

variancet =
t∑

i=1

s∑

k=1

(−log(P̂i−1[xt−1][k])−meant)
2 · (P̂i−1[xt−1][k]) (23)

sdt =
√
variancet (24)

15



The break-point criteria is to break if:

|scoret −meant| > βsdt (25)

Each time a break-point is triggered, the count matrix used to generate P̂ is then passed to the
clustering stage of the algorithm.

2.6.4 IBS Clustering

Unlike in BCD where the entire set of segments is known prior to the clustering phase, IBS must
perform segment clustering in an incremental fashion. It keeps a library of existing clusters, and
each time a new segment is detected by the break-point phase, it is tested for subsumption with each
of them. In addition, a likelihood score is computed for the augmented set of matrices including
this segment as a new member of the set. In future versions of IBS this score will be offset by the
probability of seeing a novel process which is the only parameter in IBS that varies with time.

Fortunately, this test can be performed fairly efficiently and in parallel. First, note in (12) that the
likelihood of the clustering given that the new segment is added as a standalone cluster, is simply
the old score plus the double product over the new cluster. Similarly, the score for each of the
subsumed variants is equal to the previous score, minus the score for the candidate cluster, plus
the score of the double product for the combined count matrix. Each of these scores depends only
on a single count matrix, and they can each be evaluated in parallel.

2.6.5 IBS Summary

For the practical application of IBS to a real-world problem, a number of issues need to be consid-
ered. In particular, the value β of the break-point detection threshold and the usage of priors are
free-parameters. In addition, pre-loading the library of matrices with domain-specific distributions
may be necessary if the sequences are too short to fully characterize the underlying probability
distribution. Also, the length of sequences needed grows as a function of s because the number of
independent parameters in each matrix grows. In general, the longer the length of each execution,
the more power IBS has to differentiate between clusters. Also, if executions are short and the in-
formation content is dominated by priors, all resulting matrices look similar and will be subsumed
together.

3 Code Overview

In this section, we present an overview of the high-level control flow of the IBS program. Then,
we suggest different ways of parallelizing the IBS code and discuss the key issues that need to be
addressed for this parallelization to work. Finally, we describe the data sets that we generated to
evaluate the performance of the parallelized IBS code (both the Cilk and MPI versions).

16



3.1 High-Level Control Flow

The IBS application consists of a main loop that reads the input file and runs the break-point
detection algorithm. Each time a break-point is detected, the count matrix for the previous segment
is passed to a function called check out process. This function either adds the segment to the
library of matrices as a new cluster or subsumes the segment into an existing matrix. Inside
check out process it enters a loop in which it calls compute subsumed marginal likelihood. This
function takes the new segment as well as a candidate cluster from the library and computes the
likelihood that would be produced by subsuming the segment and the candidate. The highest score
amount all possible candidates and the standalone score indicates how the new segment should be
incorporated into the library.

3.2 Parallelizable Computation

In general, we considered several different approaches to parallelizing IBS. First, we considered
different techniques for improving the break-point detection algorithm by running it in parallel.
However, after some code profiling (in which break-points were detected but ignored by not passing
the segment to check out process) we discovered that it ran at a rate nearly equal to the rate
at which the input file could be read by the operating system. One interesting idea that could
be explored would be using the probability distributions to speculatively evaluate the most likely
transitions in parallel and then use a communication from the processor that happened to parse
the transition first to select from the possibilities. However, given the results of the profiler and the
limited time-frame for the project, we decided to focus on parallelizing other portions of the code.

The first step to parallelizing the clustering portion of the code was a mathematical analysis of
(12). We realized that the outer product, evaluated over each cluster, could be evaluated in parallel
and depended only on the count matrix for a particular cluster. Similarly, when comparing two
possible clusterings, the only difference between them would involve a single subsumption. Finally,
the encoding of the globally optimal subsumption could be expressed entirely in an integer index
into the library of matrices (or -1 if the matrix should be added as a stand-alone cluster).

The next question to consider was how to store the library of matrices. One solution would
be to have each processor store some subset of the matrices, and then perform that subset of
the subsumptions. However, in this case, calculating the score for adding the new segment as a
standalone cluster would require adding scores from each of the processors. We then realized that
the library of matrices itself is not particularly large, and we could build it in a replicated manner
at each node without any additional communication overhead. Since each node would need to know
the new segment in order to compute its subset of subsumptions, as long as it learned the globally
optimal index at the end of each classification, each node could build the same resulting library.
Note that the memory requirements for the library depend only on the number of clusters and s and
not on the number of transitions (assuming that none of the counts overflow). Overflowing is not
considered, because in practice, if the count matrices contain enough entries to overflow a particular
member, the resulting probabilities are extremely stable with respect to the pertubations caused
by an incremental transition. A real-world application of IBS would stop subsuming elements into
a matrix when the possible changes in the estimated probabilities were too small to matter.

After we decided to store the library in a replicated fashion, and to perform some subset of the
subsumption tests on each node, writing the MPI version of the code was a straightforward applica-

17



tion of using library functionality. However, writing the Cilk version required a completely different
view of the problem as the set of abstractions it provides did not cooperate with this model.

3.3 Data Sets

In order to evaluate the performance of the parallel version of IBS for different numbers of pro-
cessors, 4 data sets were generated. Each data set was constructed by choosing a certain number
of random Markov matrices, with a particular dimension, and then interleaving their execution.
Interleaving was performed by choosing a random permutation of the matrices, iterating over the
set in that order, and generating a time-series based upon that distribution for a certain number
of transitions. This entire process was repeated in a number of cycles. The exact values used in
the 4 data sets are listed in the table below.

File Matrices States Transitions Cycles

50.lisp 16 50 100 20

100.lisp 32 50 100 20

150.lisp 50 50 1000 50

200.lisp 50 99 1000 50

Choosing a random Markov matrix with s states is equivalent to choosing s vectors in s dimensions
that have non-negative components that sum to 1. These vectors can also be viewed as points
along the s − 1 dimensional simplex which has the equation: x1 + x2 + ... + xs = 1 and each
xi > 0. A number of well-known techniques exist for sampling this space with varying levels of
bias towards particular types of vectors. The method used picked s pseudo-random numbers on
the interval [0 − 1] and sorted them. The distance between successive pairs of elements, inserting
an artificial 0 before the first element to generate the first distance, was normalized to produce a
vector that is believed to be an un-biased sampling of this space. The actual behavior of IBS makes
no particular assumptions about the character of the matrices it learns, although having a truly
uniform sampling of matrices would make it less likely that two matrices appear similar enough to
be classified together.

4 Methods of Parallelization

In this section, we provide some background information on the two methods of parallelization used
on the IBS C code: MPI and Cilk.

4.1 MPI

MPI, the Message Passing Interface, is a standard library that defines communication protocols
for use in parallel computing. It consists of a set of library functions that help programmers write
portable parallel code. Unfortunately it has a fairly low-level API meaning that programmers must
write a great deal of code in order to parallelize an algorithm. For example, in order to parallelize
IBS it was necessary to write marshalling code for transfering data structures. For more information
about MPI refer to http://www-unix.mcs.anl.gov/mpi/.

18



4.2 Cilk

Cilk is a language for multithreaded parallel programming based on ANSI C that is very effective
for exploiting highly asynchronous parallelism, which can be difficult to write using message-passing
interfaces like MPI [2]. Originally developed by the Supercomputing Technologies Group at the
Laboratory for Computer Science at MIT, Cilk differs from other multithreaded programming
systems by being algorithmic in nature—that is, it employs a scheduler in its runtime system that
allows the performance of programs to be estimated using abstract complexity measures [7]. As a
result, the runtime system can guarantee both predictable and efficient performance in its execution
of these programs.

The underlying philosophy of Cilk is that a programmer should focus on writing the program to
expose its parallelism and exploit locality to the best extent possible. The runtime system, in turn,
should be concerned with scheduling the computation to run efficiently on a given platform, taking
care of issues such as load balancing, paging, and communication protocols [2]. The runtime system
achieves this by implementing a scheduling policy based on randomized work-stealing.

When a Cilk program is run, the user has the option of specifying the number of “processors” or
“worker threads” to create via a command-line argument (if no number is specified, a default value
is used). The runtime system then creates this many worker threads (or workers) and schedules
the user computation on these workers; it leaves the task of scheudling the threads on the physical
processors to the operating system itself. During the execution of a Cilk program, if a worker
runs out of work to do, it chooses another worker at random (called the victim) and tries to steal
work from the victim. If the steal is successful, the worker begins working on the stolen piece of
work; otherwise, it picks another worker (uniformly at random) to be the victim and continues
work-stealing until the steal is successful.

Cilk’s work-stealing scheduler executes any Cilk computation in nearly optimal time [2]. If we let
TP be the execution time of a given computation on P processors (or worker threads), then the
following two definitions are immediate: 1) T1 is the total time needed to execute the computation
on one processor (this is equivalent to the work involved in the computation), and 2) T∞ is the time
needed to execute the computation on an infinite number of processors (this is equivalent to the
program’s critical-path length. Given these definitions, the work-stealing scheduler of Cilk executes
a computation on P processors in time

TP ≤ T1/P +O(T∞) (26)

which is asymptotically optimal [2]. The constant factor hidden in the big O is often close to 1 or
2 [7], so in practice we have that TP ≈ T1/P + T∞.

Converting a serial C program into its parallel equivalent in Cilk usually involves no more than the
inclusion of the cilk.h header file and the addition of a few key words: cilk, spawn, and sync.
Section 5.1 describes the modifications made to the IBS C code to convert it into a parallel Cilk
program.

5 Cilk Version

In this section, we describe the modifications made to the IBS C code to convert it into a parallel
IBS Cilk program, based on the strategy outlined in Section (3.2). We then present some perfor-

19



mance metrics obtained from running the program on a 32-processor supercomputer owned by the
Supercomputing Technologies Group at MIT’s Lab for Computer Science.

5.1 Code Modifications

As we stated in Section 4.2, the modifications required to convert a C program into its parallel
equivalent in Cilk are minimal. The general procedure is to identify the C methods that will be
parallelized (as well as the methods that call them), and convert these methods into Cilk methods.
In the case of the IBS C code, our main target for parallelization is the computation performed by
the compute subsumed marginal likelihood() method (see section 3.2). In order to perform the
matrix subsumptions in parallel, we insert the spawn keyword before the call to this method:

for (i = 0; i < stored processes; i++) {
spawn compute subsumed marginal likelihood(proc,

get(processes,i),

copy process list(processes));

}

sync;

A spawn in Cilk is the parallel analog of a C function call, in that execution proceeds to the child
when a procedure is spawned. Unlike a C function call, however, the parent in a spawn can continue
to execute in parallel with the child [2]. In the code above, a child is spawned for each of the stored
Markov processes (represented internally as matrices) so that the matrix subsumptions can occur
in parallel with each other. The sync statement ensures that all of the spawned children have
completed their execution before the parent continues with its own execution—thus, it acts like a
fence across all worker threads of the Cilk program that may be executing these children.

A few additional tricks are required to prevent the worker threads of the IBS Cilk program from
stepping on each other’s toes. First, instead of passing a pointer to the global list of Markov
processes (processes) to the spawned child procedures, a shallow copy of the list is made (via
the call to copy process list() above) and this copy is passed. Also, while in the original C
code the call to compute subsumed marginal likelihood() returns a score that is then com-
pared to the highest score seen so far (replacing the latter value if it is found to be higher),
in the Cilk version a global score structure is used for this purpose instead. Since the spawned
compute subsumed marginal likelihood() procedures directly update the global score structure,
we must enforce mutual exclusion between write accesses to this structure. In Cilk, this is achieved
by using a special lock of type Cilk lockvar, as seen in the following code fragment:

// Declare a global score lock

Cilk lockvar score lock;

...

// Initialize the score lock

Cilk lock init(score lock);

...

20



void update global score(double score, ...) {
if(score <= global score.score) {

return;

}

// Acquire the lock

Cilk lock(score lock);

...

// code to update the global score value

...

// Release the lock

Cilk unlock(score lock);

}

5.2 Performance Results

We now present the results obtained from running the IBS Cilk program on different data sets
and different numbers of processors (or worker threads). The machine used to run the program is
a 32-processor SGI Origin 2000 shared-memory supercomputer supporting sequential consistency;
the individual processors run at 195 MHz each [3].

The chart below shows the program’s elapsed time for the 50.lisp and 100.lisp data sets, de-
scribed in Section 3.3. For each data set, separate trials were performed using 1, 2, 4, 8, 16, and
32 processors.

Time to Run IBS Cilk Code

0

20

40

60

80

100

120

140

160

Cilk-1 Cilk-2 Cilk-4 Cilk-8 Cilk-16 Cilk-32

Processors

S
e
c
o

n
d

s

50.lisp

100.lisp

Figure 4: Elapsed time of IBS Cilk code run on 50.lisp and 100.lisp data sets.

The results above indicate that the parallelism of the IBS Cilk program is about 2; that is, the
parallelism of the program is best exploited by using 2 processors to run it. Beyond 2 processors,

21



the elapsed time of the program actually increases (but never above T1, the time taken to run the
program on 1 processor). We believe that the reason for this slowdown is the overhead incurred by
the Cilk runtime system—the extra cycles needed to manage the created worker threads (recall that
the number of worker threads is equivalent to the number of processors specified by the user). It
seems as if the individual calls to compute subsumed marginal likelihood() do not take as long
as we originally thought, and therefore 2 worker threads are able to handle the workload efficiently,
the second making only a few steals from the first. When more than 2 worker threads are used,
however, the majority of them are unable to find any work to steal, and so they enter a continuous
work-stealing loop in which they repeatedly try and fail to steal work from other threads. The end
result is that the Cilk runtime system has to spend a significant amount of time handling these
work-stealing threads, while the threads themselves are unable to steal (and hence perform) any
useful work.

5.3 Adaptive Parallelism

Currently, the user of a Cilk program has to specify the number of processors to run the program
on—if no number is specified, a default of 2 processors is used. One way to automate the process of
finding an ideal allocation of processors is to incorporate adaptive parallelism into the Cilk runtime
system. In other words, we would like the runtime system to be able to increase or decrease
the number of processors being used by a Cilk job dynamically. The hope is that these dynamic
adjustments will allow the runtime system to adapt to the actual parallelism of the program being
run. For example, in the case of the IBS Cilk program running on the 50.lisp or 100.lisp data
sets, the runtime system would ideally settle down to an allocation of 2 processors for the Cilk job.

The task of incorporating adaptive parallelism into Cilk is three-fold; the problem can be divided
into the following three subtasks:

1. Implement “static” or “one-time” adaptive parallelism by intelligently determining the initial
number of processors to run a Cilk job on if this number is not specified by the programmer.
We refer to this number as a Cilk job’s fair share of processors, defined further below.

2. Implement dynamic adaptive parallelism by increasing the number of worker threads assigned
to a Cilk job (without exceeding its fair share) if the instantaneous parallelism of the job
(defined below) is sufficient to merit the increase.

3. Implement dynamic adaptive parallelism by decreasing the number of worker threads assigned
to a Cilk job if the instantaneous parallelism of the job is insufficient to make adequate use
of the current thread allocation.

Task 1 above depends directly on our definition of a program’s fair share of processors, and tasks
2 and 3 depend on our method of measuring the instantaneous parallelism of a given Cilk job. We
now explain the meaning of these terms, based on the results obtained in [5] and [6].

Consider the problem of scheduling J jobs on P processors. At any given time, each job j =
1, 2, ..., J has an instantaneous parallelism or desire dj which represents the number of threads that
the job currently desires (this is equivalent to the number of threads that are either running or ready
to run) [6]. Let mj be the number of processors allocated by the job scheduler to job j at any given
time—this is also known as the job’s allotment. Then, the vector of allotments 〈m1,m2, ...,mj〉 is

22



a legal allocation if
∑J

j=1 mj ≤ P . In addition, an allocation is said to be efficient if the following
two conditions are held [6]:

• If there exists a job j such that dj < mj , then di ≤ mi for i = 1, 2, ..., J .

• If there exists a job j such that dj > mj , then
∑J

j=1 mj = P .

Finally, an allocation is said to be fair if the following condition hods [6]:

• If there exists a job j such that dj > mj , then mi ≤ mj + 1 for i = 1, 2, ..., J .

Our goal now is to modify the Cilk scheduler so that it dynamically estimates the desires of Cilk jobs
and allocates processers to these jobs in a fair and efficient manner. [6] describes such a scheduler,
using the “steal rate” of a job j to approximate its desire dj . In particular, the scheduler in [6]
uses the number of consecutive unsuccessful steals to approximate the fraction of time a processor
spends stealing. If this fraction is too high, then the scheduler knows that the parallelism of the
job is insufficient, and so it decreases the number of processors allocated to the job; if the fraction
is too low, then the scheduler knows that the parallelism of the job is greater than the number of
allocated processors, so it allows the estimated desire of the job to increase.

The next step from here is to implement the scheduler in [6] and try to improve its algorithm for
measuring the desires of Cilk jobs. Unfortunately, due to time constraints, this supplement to our
project could not be completed and will have to be postponed for future work.

6 MPI Version

In this section, we describe the modifications made to the IBS C code to convert it into a parallel IBS
MPI program, based on the strategy outlined in Section (4.2). We then present some performance
metrics obtained from running the program on the test data-sets.

6.1 Code Modifications

Three major code modifications were necessary to write an MPI version of IBS. First, marshalling
code was written in order to broadcast a segment from the root node to each of the other nodes.
Secondly, the main loop was modified so that the root node parsed the file and performed the
break-point detection while each of the other nodes waited to be sent a segment. Finally, com-
pute subsumed marginal likelihood was modified to perform only a subset of the computations
based upon the rank of the processor. At the end of this function, MPI Allreduce was used to
calculate and distribute the globally optimal index of the matrix subsumption.

6.1.1 Marshalling

It was necessary to write functions to broadcast a count matrix between the root node and all of
the other nodes. Portions of this code are shown below:

23



#define BROADCAST_SIZE 7600

int broadcast_buffer[BROADCAST_SIZE];

typedef struct broadcast {

int start;

int end;

process* proc;

bool done;

} broadcast;

void broadcast_segment(process* proc,

const int start,

const int end,

bool done) {

int i,j,k;

broadcast_buffer[0] = start;

broadcast_buffer[1] = end;

broadcast_buffer[2] = proc->index;

broadcast_buffer[3] = proc->position;

broadcast_buffer[4] = proc->type;

...

MPI_Bcast(broadcast_buffer,BROADCAST_SIZE,MPI_INT,0,MPI_COMM_WORLD);

}

broadcast* receive_broadcast(int r) {

int i,j,k;

process* proc = make_process2(-1,-1);

if(rank == 0) {

die(__LINE__,__FILE__);

}

MPI_Bcast(broadcast_buffer,BROADCAST_SIZE,MPI_INT,0,MPI_COMM_WORLD);

bc.start = broadcast_buffer[0];

bc.end = broadcast_buffer[1];

bc.proc = proc;

bc.done = broadcast_buffer[k++];

return &bc;

}

6.1.2 Main Control Loop

The outer main loop was altered slightly such that only the root node began parsing the input file.
The other nodes entered an infinite loop where they waited to receive broadcasts in order to do
subsumption work. The exited the loop when a flag was set in the broadcast structure.

24



if(rank == 0) {

db = fopen(argv[1],"r");

...

}

else {

while(true) {

pBC = receive_broadcast(rank * 17);

...

}

}

6.1.3 check out process

check out process performs the segment classification and was re-written slightly to perform the
broadcast and then calculate only a subset of the subsumption scores. MPI Allreduce was then
used to find the global optimum and the relevant changes were made to the library of matrices.

broadcast_segment(proc, start, end, done);

local_score.score = compute_marginal_likelihood(processes);

local_score.index = -1;

for(i=0; i<stored_processes; i++) {

if(i % np != rank)

continue;

score = compute_subsumed_marginal_likelihood(proc,

get(processes,i),

&subsumed_result,

processes);

if(score >= local_score.score) {

local_score.score = score;

local_score.index = i;

best_cluster = subsumed_result;

candidate = cluster;

}

}

...

MPI_Allreduce(&local_score,

&global_score,

1,

MPI_DOUBLE_INT,

MPI_MAXLOC,

MPI_COMM_WORLD);

if(global_score.index == -1) {

ret = store_new_process(proc,processes);

}

else {

25



candidate = get(processes,global_score.index);

ret = store_subsumed_process(proc,

candidate,

best_cluster,

processes);

}

...

Similar code appeared in the branch of the main loop executed on the non-root nodes. In this
manner the subsumption was performed in parallel after the broadcast of the latest segment. Each
node performed the same actions on its local libary of matrices and the result was a distributed
replicated set of matrices.

6.2 Performance Results

The MPI version of IBS saw a linear speedup for each of the data-sets when the first additional
processor was added. However for more than 2 processors, while there was a slight speedup,
the effect was negligible. This is probably due to the fact that the broadcast between the first two
processors occureed on the same machine while adding more processors required using TCP/IP. Also
the marshalling code was highly un-optimized and required sending 7600 bytes. Given more time
to tune the code we would have attempted to greatly reduce this number. Some easy optimization
would have been to avoid sending one element per row in each of the matrices and relying on the
fact that s−1 of them detemine the last value. Furthermore, only the count matrices really needed
to be sent as the probability estimates (s2 · 8 bytes per matrix) could be quickly computed at each
node based on the integer counts. Finally the counts could have been compressed by using short
integers rather than long integers. We estimate that with all of these simple optimizations, the
marshalling code would have run at least twice as fast. A graph is shown below illustrating the
performance on each of the data-sets.

7 Conclusion

7.1 Summary of Results

Both the IBS and Cilk version of IBS were able to achieve nearly linear speedup over the serial
algorithm when 2 processors were used. For MPI the code ran slightly faster on 3 and 4 processors,
but inefficient marshalling code prevented the additional computational resources from providing
more of a benefit. For Cilk the results were actually worse when more than 2 processors were used
as the overhead of the scheduling system caused the performance to suffer.

Overall we feel that the experience of attempting to parallelize a real-world application was a
worthwhile endeavor, although it proved to be extremely frustrating at times. Writing the MPI
version was extremely difficult both conceptually and pragmatically, as debugging was extremely
tedious. Writing the Cilk version was much easier although we were forced to deal with the
traditionally difficult issue of synchronization and locking.

26



Time to Run IBS MPI Code

0

100

200

300

400

500

600

700

MPI-1 MPI-2 MPI-3 MPI-4

Number of Processors

S
e
c
o

n
d

s 50.lisp

100.lisp

150.lisp

Figure 5: Elapsed time of IBS MPI code run on 50.lisp and 100.lisp data sets.

We feel that the process of parallelizing the algorithm involved a series of difficult steps. First, we
had to diagnose the bottlenecks in the serial algorithm and find places where parallelization would
possibly yield an improvement. Next we were forced to think abstractly about how to best organize
the communication between nodes in order to perform the parallel tasks concurrently. Next, and
perhaps the most painful portion of the experience, we needed to write MPI code to enact our
algorithm. Writing this code produced many unexpected bugs each of which required hours worth
of debugging to resolve. Part of this process was made worse by the constant crashing of nodes on
beowulf and the instability of PBS. Finally, towards the end of the term, we had to compete with
other students for time on the machine to run test batches and measure actual performance.

Writing the Cilk version, while not nearly as difficult as MPI, introduced its own issues. First,
we needed to port the code from C++ to C, which was a painful and monotonous task. Next we
had to work to get the code to compile in the proper environment with the Cilk compiler. This
introduced frustrating library and header file issues but was eventually successful. Finally, the Cilk
code seems farily unstable and would produce segmentation faults for seemingly no reason. One of
the biggest lessons that we bring from this experience is that parallel programming has a long way
to go before it becomes as straightforward as writing and debugging serial code.

References

[1] M. Ramoni — P. Sebastiani — P. Cohen. Bayesian clustering by dynamics. Machine Learning,
47(1):91–121, 2002.

[2] Supercomputing Technologies Group. Cilk 5.3.2 Reference Manual. MIT Lab for Computer
Science, November 2001.

27



[3] J. Laudon and D. Lenoski. The sgi origin: a ccnuma highly scalable server. In Proceedings of
the 24th Annual International Symposium on Computer Architecture, 1997.

[4] P. Sebastiani and M. Ramoni. Incremental bayesian segmentation of categorical temporal data.
2000.

[5] B. Song. Scheduling adaptively parallel jobs. Master’s thesis, Massachusetts Institute of Tech-
nology, January 1998.

[6] R. D. Blumofe — C. E. Leiserson — B. Song. Automatic processor allocation for work-stealing
jobs.

[7] R. D. Blumofe — C. F. Joerg — B. C. Kuszmaul — C. E. Leiserson — K. H. Randall — Y.
Zhou. Cilk: An efficient multithreaded runtime system. In Proceedings of the Fifth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), pages
207–216, Santa Barbara, California, July 1995.

28


