
18.337J Project Final Report:

Parallel Off-Lattice Monte Carlo Simulations

Ahmed E. Ismail and Cynthia Lo

May 8, 2002

1 Introduction

A principal goal of molecular simulations is to calculate accurately and efficiently the ther-

modynamics properties of a system containing many atoms or molecules. The individual

particles in the system can be simple, non-interacting point particles, representing an ideal

gas, or complicated connected structures, simulating large chain molecules such as polymers

or proteins. By computing quantities such as free energies or densities, we can attempt to

produce phase diagrams, which demonstrate the behavior of a system over a wide range of

parameters such as temperature and pressure.

1.1 Grand Canonical Monte Carlo

Since we want to calculate equilibrium properties, we chose to perform off-lattice Monte

Carlo (MC) simulations, which employ a sequence of random numbers to sample particle

moves from a probability density function. In particular, we used the Grand Canonical

(GC) ensemble, where the chemical potential, volume, and temperature are fixed, while the

number of molecules fluctuates. GCMC is particularly well suited to study phenomena that

occur under conditions in which energy and matter are exchanged between the system and

its physical surroundings, such as as adsorption, capillary condensation, and vapor-liquid

equilibrium. For simplicity, we performed our simulations on a two-dimensional system.

Monte Carlo simulations consist of sequences of trial moves: for our system, there are

1

three types of trial moves: relocation, creation, or destruction of a particle. Any such move

is associated with a change in the energy E of the system corresponding to the change

from old “microstate” m to new “microstate” n. The acceptance or rejection of this trial

move is determined by the Metropolis criterion. For a relocation, the move is automatically

accepted if the change in energy ∆Enm ≡ En−Em ≤ 0; if the change in energy is positive,
a random number ξ is generated uniformly in (0, 1) , and the move is accepted if

exp (−β∆Enm) ≥ 0;

the factor β = (kBT)
−1 scales the energy so that the product is dimensionless.

Simulations in the grand canonical ensemble also allow us to create or destroy particles;

after each trial relocation, we attempt to create or destroy particles with equal probability.

The acceptance criterion for creation of a particle is

µ
1+

N + 1

zV
exp (β∆Enm)

¶−1
≥ ξ, (1)

while the acceptance criterion for destruction of a particle is

µ
1+

zV

N
exp (β∆Enm)

¶−1
≥ ξ, (2)

where in both (1) and (2) z ≡ exp (βµ) represents the chemical activity of the system.

1.2 Parallelization Schemes

Since large numbers of calculations need to be performed to obtain accurate thermodynamic

behavior, one expects that some form of paralellization can be used to improve the efficiency

of our calculations. The dominant computational cost in a MC simulation is the calculation

of the energies as a function of the positions of the different molecules in the system.

However, it is inefficient on distributed memory machines to divide this calculation among

multiple processors, since the communication that is necessary for exchange of information

2

is too great, given the excessive number of times that this routine must be called (once

for every particle in the system for every trial move). For shared machines, however, an

OpenMP implementation which shares the loop calculation might be effective. Thus, for

distributed memory machines, we look for a parallel algorithm which exploits decomposition

or performs multiple simulations simultaneously.

There have been several methods proposed for parallelization, including spatial decom-

position of the simulation volume, time decomposition, and parallel tempering. Spatial

decomposition makes use of the fact that atoms separated by a distance greater than the

maximum range of the potential are independent and can be moved simultaneously. The

simulation system is divided into some number of domains; for simplicity these domains are

similar in shape and proportion to the original system. Each processor is assigned one of

these domains, moves an atom in its domain at the same time as other processors, and is

responsible for calculating the energy of the proposed move as well as those of its neighbors.

Problems arise when two or more processors simulaneously move atoms that are close to

each other but reside on adjacent processors, or when particles need to be moved between

processors. Heffelfinger and Lewitt [2] proposed a scheme where each processor’s domain is

further subdivided into 2n subdomains. Therefore, by assigning each processor to work in

the corresponding subdomains at the same time, the problem is avoided.

In contrast, time domain decomposition involves simultaneous simulations, one per pro-

cessor, which are identical except for the value of the initial random number generator seed.

The thermodynamic quantities are averaged over all processors. The drawbacks include

long equilibration times relative to production times, and memory limitations, in which a

single processor may not be able to store all the coordinates of the system in memory.

Finally, parallel tempering (PT) [3] is a new algorithm, where MC simulations are

simultaneously carried out at N different temperatures which span the range of interest.

Cycles of traditional MC moves, carried out according to the normal Metropolis acceptance

criteria, are carried out as usual. Between cycles, a new type of move, representing exchanges

between the configurations at different temperatures are attempted and accepted according

to detailed balance. The requirements for successful PTMC simulations are that

1. The highest temperature Tn must be high enough so that all barriers on the potential

3

energy surface can be surmounted.

2. The spacing between adjacent temperatures Ti and Ti+1 s is chosen such that there

is about 20-40% overlap between probability density functions. This method is easily

parallized, since the simulations at the N temperatures can be carried out on N
processors.

2 Methodology

We chose to perform GCMC simulations, attempting first to perform spatial decomposition,

and later using parallel tempering (see below). The atoms interact according to the pairwise

Lennard-Jones potential, which for short-range and long-range are given as:

vLJij (r) = 4²

"µ
σ

rij

¶12
−
µ
σ

rij

¶6#
(3)

V LJLRC (r) =
8

9
πNρσ3²

"µ
σ

rcut

¶9
− 3

µ
σ

rcut

¶3#
(4)

We chose to use a unit potential well depth ². The system size for each processor was

1.0× 1.0, and there are initially natoms = 100 atoms per box. The cutoff radius was rcut =
0.03, while the Lennard-Jones diameter was σ = 0.01. The simulation temperatures ranged

from T = 300K to T = 300+50 (N − 1), where N is the number of processors utilized. The

activity coefficient was chosen to be z ∈ {25, 125, 625} to allow for a range of possibilities
in the ratio of creations to destructions.

For simplicity, the atoms are treated as point particles; although the chances of overlap

are infinitesimally small, a minimum atom separation of 1 × 10−10 is enforced to prevent
the repulsive pairwise energy from becoming too large.

4

atoms box size temperature potential energy density pressure

100 1.0 300 1e-5 115 34500
7e-6 111 33300
1.6e-5 124 37200

400 1.0 300 0.229 137 41100
-1.72e-4 121 36300
3.63e-2 112 33600

900 1.0 300 23.63 122 36639
-4.84e-4 119 35700
-0.977 119 35700

Table 1: Effect of varying initial number of particles on final density.

atoms box size temperature potential energy density pressure

100 1.0 300 1e-5 115 34500
7e-6 111 33300
1.6e-5 124 37200

100 2.0 300 2.54e-4 127 38100
-0.808 115.25 34575
2.35e-4 119.5 35850

100 3.0 300 2.63e-2 119.78 35933
7.71e-3 121.11 36333
6.12e-4 120.67 36200

Table 2: Variation of simulation box size

3 Results

3.1 Serial Code

We first wrote a serial version of the GCMC code, in order to gain experience with writing

MC codes, and to get density and pressure values to compare to those from the parallel

code. The results from three trials, on one processor, are shown in Tables 1-3:

Although the error bars resulting from just three data sets are large, some trends are still

apparent from these observations. From Table 1, we see that the equilibrium atom density

does not vary as a function of initial density–this is entirely consistent with the equilibrium

sampling of a grand canonical ensemble. In fact, were this not to be so, this would indicate

that there is an error in our simulation. This shows that the Lennard-Jones repulsion is too

5

atoms box size temperature potential energy density pressure

100 1.0 300 1e-5 115 34500
7e-6 111 33300
1.6e-5 124 37200

100 1.0 350 -6.2e-5 109 39150
-69.47 124 43295
2.6e-2 108 37800

100 1.0 400 2.48e-2 133 53200
7.53e-3 126 50400
1.1e-5 116 46400

100 1.0 450 9e-6 113 50850
0.477 123 55350
-794.14 118 52002

100 1.0 500 1.8e-5 128 64000
1.8e-5 128 64000
0.632 142 70999

100 1.0 550 0.272 119 65450
7.42e-3 126 69300
-0.178 131 72050

100 1.0 600 2.77e-2 109 65400
5.75e-2 114 68400
-1.11 132 79195

100 1.0 800 4.07e-3 118 94400
1.2e-5 119 95200
2.58e-2 115 92000

100 1.0 1400 2.5e-5 140 140000
-2.24 130 129993
1.33e-2 125 125000

Table 3: Variation of system temperature

6

great for the close-proximity atoms in the high-loading system, and destruction occurs with

a much greater probability than creation. In addition, we notice that the equilibrium system

pressure increases with temperature at constant initial density and box size, as expected by

the ideal gas law.

Finally, the system run times scale as a function of O
¡
L2
¢
with box size L (t = 1.3 s for

box size = 1.0, t = 12.1 s for box size = 2.0, t = 57.3 s for box size = 3.0), but not with

the temperature or the density. This is because the larger boxes require a larger number of

total particles, and since the change in energy is computed via a loop over all the particles

in the system on a given processor, as the system size increases, the number of particles

also increases. Also, the number of trial moves needed for a given iteration to be complete

also increases, which leads to the O
¡
L2
¢
scaling.

3.2 Spatial Decomposition

We next attempted parallel spatial decomposition, but without the subdomains employed

by Heffelfinger and Hewitt. Unfortunately, our use of off-lattice MC meant that the bor-

der atom positions could not be easily broadcast in array form to the adjacent processors.

Therefore all atom moves, not just those of atoms on the border between two processes,

needed to be broadcast to all processors, along with a flag indicating the sending and re-

ceiving processors. Each processor needed to calculate the energy change at each move, and

only if the overall energy of all the processors were favorable would the move be accepted.

Also, the timing results were not competitive with the serial GCMC code, so spatial de-

composition was not efficient for our system. Perhaps if our system were much larger, in

terms of number of particles and volume, then spatial decomposition would be more viable.

As it stands, our simulation system only has a small number of particles and a relatively

small box size, and the hoped-for benefits of parallelization are not evident.

7

#Proc. Box Size/Proc. Running Time #Proc. Box Size/Proc. Running Time

1 2.0× 2.0 53.3s 1 3.0× 3.0 251.3s

4 1.0× 1.0 56.0s 9 1.0× 1.0 302.0s

From this, we see that the cost of communications between the various processors proved

too high for the systems that we were considering. One potential cause for this is the

high latency of the communications–which we now believe to be on the order of several

microseconds–relative to the total size of the message, which was usually on the order

of one kilobyte or less. Since these communications had to be carried out after every

Monte Carlo move, the total costs of the communications between the processors greatly

outweighed the computational benefit of splitting up the work among multiple processors.

However, this method may still prove useful for very complicated molecules, with many

degrees of freedom, for which the interaction potential v is more difficult to calculate than

the Lennard-Jones potential νLJ .

3.3 Parallel Tempering

Discovering that spatial tempering did not yield successful results upon parallelization, we

decided to next implement a parallel tempering algorithm. Our primary goal was to show

that the equilibration of such an algorithm could be performed as rapidly for many systems,

running at a variety of temperatures, as for a single system. The test would be that the

resulting energy distributions are essentially independent of the temperature, representing

the overall equilibrium of the system.

As the basis for our testing, we implemented the algorithm for 10000 cycles, each consist-

ing of 5000 MC trial moves (particle relocation followed by particle creation or destruction

attempts). The resulting graphs, at activities of z = 25, z = 125, and z = 625 for the tem-

peratures T = 300K through T = 1250K, at 50K intervals, are plotted in the accompanying

figures. The computation times are indicated in the following graphs.

8

#Proc. Running Time (z = 25) #Proc. Running Time (z = 125)

1 387.2s 1 1384s

8 436.8s 8 1396s

16 440.9s 16 1402s

20 447.0s 20 1512s

These results are excellent, since there is only an increase in running time of the order of

10% to 15%, while the number of systems brought to equilibrium has increased by a factor

of 20. Consequently, the scaleup is a factor of approximately 17.5 for a system with 20

processors.

1E1

1E2

1E3

N
um

be
r o

f p
ar

tic
le

s

200 400 600 800 1000 1200 1400
Temperature, T

Activity = 625

Activity = 125

Activity = 25

Grand Canonical Monte Carlo
N as a function of mu and T

For the z = 25 system, we also show that the energy values are within a 3% band for

the range of temperatures for which we have performed the simulation, which indicates that

the system has come to equilibrium.

9

-2.06

-2.04

-2.02

-2

-1.98

-1.96

-1.94

En
er

gy

200 400 600 800 1000 1200 1400
Temperature, T

Grand Canonical Monte Carlo
E as a function of T for mu =25

4 Conclusions and Future Work

Our work suggests that the spatial decomposition algorithm for grand canonical ensemble

simulations is of practical interest only for large systems or systems with complicated inter-

action schemes for which the cost of communications is in scale with the savings realized by

dividing the workload among multiple processors. Parallel tempering, however, represents

an efficient means for bringing multiple systems to equilibrium simultaneously, as the com-

munication costs are negligible compared to the normal costs of performing the simulation

on a single system.

The natural next steps of this project would be to incorporate atoms with finite radii

and hard interactions (chain molecules), instead of point particles, and to extend the system

to three dimensions, as well as optimization of the MPI code for parallel tempering. Our

code provides a solid basis for further thermodynamic studies of gases and liquids, and will

be applicable to our thesis research.

10

References

[1] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University

Press, 1987.

[2] G. S. Heffelfinger and M. E. Lewitt. A comparison between two massively parallel algo-

rithms for Monte Carlo computer simulation: An investigation in the grand canonical

ensemble. J. Comp. Chem., 17(2):250—265, 1996.

[3] K. Hukushima and K. Nemoto. Exchange monte carlo method and application to spin

glass simulations. J. Phys. Soc. Japan, 65(6):1604—1608, 1996.

11

