Number of rounds for Consensus

Non-Uniform Consensus

• (Non-Uniform) Agreement: No two correct processes decide on different values
• Validity: If all processes start with the same value $v \in V$, then v is the only possible decision value
• Termination: All correct processes eventually decide
(For simplicity and w.l.o.g., $V=\{0,1\}$)
The concept of valency

• Let C be a reachable state of a Consensus algorithm:
 – C is 0-valent (1-valent) if starting from C the only possible decision value of correct processes is 0 (1)
 – C is univalent if it is either 0-valent or 1-valent
 – Otherwise, C is bivalent

Intuition

• Valency is an external observer notion
• It captures the fact that an algorithm is committed to a certain decision value at certain point
• If no failures are possible then all executions are univalent
An example

- Consider the last week algorithm for $n=3$, $t \leq 1$. Let 0 be the default decision value
- Consider an initial state $C_0=(0,1,1)$
- What’s the valency of C_0 if no failures are possible ($t=0$)?
- What’s the valency of C_0 if $t=1$?

Lemma 1

- Let A be an algorithm that solves NUC and tolerates at most 1 failure. Then, A has a bivalent initial state

Assume that all initial states are univalent

By validity, if all processes start from 0 (1), then the decision value must be 0 (1)
Lemma 1 (cont.)

There exist two initial states C_0 and C_0' that differ in the input value of a single process p and have different valency.

Assume w.l.o.g. that all processes decide 0 in all executions starting from C_0 and 1 in all executions starting from C_0'.

Let α (α') be an execution starting from C_0 (C_0') where p fails before sending any msg.

For all processes $q \neq p$ α is indistinguishable from α' ($\approx_q \alpha'$), all correct processes decide the same value in both α and α'.

\[0 \quad 0 \quad 0 \quad 0 \quad 0 = 0 \]
\[1 \quad 0 \quad 0 \quad 0 \quad 0 \]
\[\ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \]
\[1 \quad 1 \quad 1 \quad 1 \quad 0 \]
\[1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 = 1 \]
Rounds for N-U Consensus

- Synchronous system S with
 - n processes
 - At most $t \leq n - 2$ stopping failures
 - At most 1 process fails at each round

Theorem 1: There does not exist an algorithm that solves NUC and decides in t rounds in S

By contradiction: Let A be such an algorithm

Lemma 2

- In any execution of A, the state reached after $t-1$ rounds is univalent

Proof:

α_{t-1}: a $t-1$ round execution of A

C_0: the initial state of α_{t-1}

C_{t-1}: the state reached after α_{t-1}

C_{t-1} is bivalent (by contradiction)
Proof of Lemma 2

Rounds 1... t-1

Round t

11110 in 1 decides (2) in 0 decides)1(α0 α1 α1

Lemma 3

• There exists an execution \(\alpha \) of A such that the state reached after t-1 rounds of \(\alpha \) is bivalent

Proof: By induction:

\(\alpha_0 = C_0 \): \(C_0 \) is the initial bivalent state of Lemma 1

\(\alpha_k \): k-round, \(0 \leq k \leq t-2 \), execution of A

\(C_k \): the state reached after \(\alpha_k \)

If \(C_k \) is bivalent, then can extend \(\alpha_k \) into \(\alpha_{k+1} \) such that \(C_{k+1} \) is bivalent
Proof of Lemma 3

Rounds 1… k, 0 ≤ k ≤ t-2

Round k+1:

\[\alpha_{k+1} \]

\[p \]

\[q_r \]

\[q_1, \ldots, q_m \]

\[q_1, q_2, \ldots, q_m \]

\[\ldots \]

\[q_{k+1}, \ldots, q_m \]

Proof of Theorem 1

• By Lemma 2, in any execution of A, the state reached after t-1 rounds is univalent

• By Lemma 3, there exists an execution \(\alpha \) of A such that the state reached after t-1 rounds of \(\alpha \) is bivalent

• A contradiction
Number of rounds for Uniform Consensus

Uniform Consensus

• (Uniform) Agreement: No two processes decide on different values
• Validity: If all processes start with the same value $v \in V$, then v is the only possible decision value
• Termination: All correct processes eventually decide
(For simplicity and w.l.o.g., $V=\{0,1\}$)
The System Definition

- Synchronous system S with
 - n process
 - At most t, $1 < t < n$, stopping failures
 - At most 1 process fails at each round
 - Messages sent by a faulty process are lost by prefix of processes: $1, \ldots, l$, where $1 \leq l \leq n$
- Let A be an algorithm that solves UC in S

#Rounds for Uniform Consensus

Theorem 1: For every f, $0 \leq f \leq t-2$, there exists an execution of A with f failures in which it takes at least $f+2$ rounds for all correct processes to decide
Actions and States

- Environment actions: (i,[k])
 - process i fails and messages to 1,…,k are lost
 - (0,[0]) nobody fails
- Each (global) state x of A is a vector of process states $[x_1,…,x_n]$ where x_i is the (local) state of process i

Executions (I)

- If x is a reachable state of A, then $(i,[k])$ is applicable to x if i is non-failed in x and t is not exceeded
 - $(0,[0])$ is always applicable
- The state of A after r rounds from an initial state x_0 is completely determined by $(i_1,[k_1]),…,(i_r,[k_r])$, where $(i_j,[k_j])$ is an e.a. applicable in round j, $1\leq j \leq r$
Executions (II)

- x is a reachable state of A and (i, [k]) is applicable to x,
 x·(i, [k]) denotes the state reached after running A for one round from x with (i, [k])
- Execution: x·(i_1, [k_1]) · … · (i_r, [k_r]) · …

Similarity

- Let x, y be two states of A
- x and y are similar, x~y, if there exists at most one process j such that x_j ≠ y_j, and at least one process i ≠ j is non-failed in both x and y
- A set X of states is similarity connected if the graph (X, ~) is connected
Lemma 1

• The set of initial states of A is similarity connected

Coloring

• Each state x is attributed a unique color (value) $\text{val}(x)$:
 – If no failures are possible after state x, then x is univalent
 – $\text{val}(x)$ is the value decided in a failure free extension of x
Lemma 2 (Uniformity Lemma)

• If
 – X is similarity connected
 – $\exists \ x, x' \in X$ such that $\text{val}(x) = 0$ and $\text{val}(x) = 1$
 – In all states in X exist at least 3 non-failed processes and 2 can still fail ($\leq t - 2$ failed)

• Then,
 – $\exists \ y \in X$ such that in $y \cdot (0,[0])$ not all decided

Proof of Lemma 2

• $y \sim y'$ and $\text{val}(y) = 0$ and $\text{val}(y') = 1$
• y and y' differ only in state of process j

Claim 2.1: either y or y' satisfy Lemma 2
Proof of Claim 2.1

• Assume by contradiction:
 – All processes decide in both y·(0,[0]) and y’·(0,[0])

• Two cases:
 (2.1.1) j is failed in either y or y’
 (2.1.2) j is non-failed in both y and y’

Proof of 2.1.1

Assume w.l.o.g. that j is failed in y’:

- i decides 1
- m decides 0
- i decides 1
- m decides 0

\[
\begin{align*}
 &\text{Proof of 2.1.1} \\
 \text{Assume w.l.o.g. that j is failed in y’:} \\
 &\text{Proof of 2.1.1} \\
 \text{Assume w.l.o.g. that j is failed in y’:}
\end{align*}
\]
Proof of Claim 2.1.2

Corollary 1

• Theorem 1 holds for f=0

Proof:
(1) The set of initial state is similarity connected (Lemma 1)
(2) val(0,…,0)=0 and val(1,…,1)=1 (Validity)
(3) n\geq 3 initially 3 correct, 2 could still fail

By Uniformity Lemma, there exists an initial state y_0 such that some process has not yet decided in the 1-round failure-free extension of y_0
Layering

- \(L(x) = \{ x \cdot (i,[k]) : (i,[k]) \text{ is applicable to } x \} \)
- \(L(X) = \bigcup_{x \in X} L(x) \)
- \(L^0(X) = X; \ L^k(X) = L(L^{k-1}(X)), \ k > 0 \)
- Define system using layers
 - \(X_0 \) is the set of initial states
 - All executions are obtained from \(L(.) \)

Lemma 3 (Connectivity Lemma)

- If
 - \(X \) is a similarity connected set
 - No process is failed in \(X \)
- Then, for all \(k, 0 \leq k \leq t: \)
 - \(L^k(X) \) is a similarity connected set
 - No more than \(k \) processes are failed in \(L^k(X) \)
Proof of Lemma 3

- By induction on k
- $k=0$ is immediate ($L^0(X)=X$)
- Assumption: $L^{k-1}(X)$ is similarity connected and no more than $k-1<t$ processes are failed in $L^{k-1}(X)$
- Prove:
 1. For all $x \in L^{k-1}(X)$, $L(x)$ is sim. con.
 2. $x \sim x' \Rightarrow \exists y \in L(x), y' \in L(x')$: $y \sim y'$

Proof of Claim 3.2

- x and x' differ in the state of at most one process i
 - i non failed in both $\Rightarrow x \cdot (i,[n]) \sim x' \cdot (i,[n])$
 - i failed in x (w.l.o.g.) $\Rightarrow x \cdot (0,[0]) \sim x' \cdot (i,[n])$
Proof of Claim 3.1

Proof of Theorem 1

- Fix f, $0 \leq f \leq t-2$
- X_0 is sim. connected (Lemma 1) $\Rightarrow L^f(X_0)$ is sim. connected (Lemma 3)
- $\exists x, x' \in X_0 \text{ val}(x) \neq \text{val}(x')$ (Validity)
- $y = x \cdot (0, [0])_1 \cdots (0, [0])_k$
- $y' = x' \cdot (0, [0])_1 \cdots (0, [0])_k$
- $\text{val}(y) \neq \text{val}(y')$ and $y, y' \in L^f(X_0)$
- By Lemma 2: $\exists z \in L^f(X_0)$ s.t. in the failure free extension of z some process decides in at least 2 rounds
Remarks

• The connectivity lemma is a general result for the stopping failure model
• Feature of the model, not of a problem
 – Implies $f+2$ bound for UC
 – Implies $f+1$ bound for NUC (HW1)
 – See [Moses, Rajsbaum 98] for more results
• The $f+2$ bound cannot be obtained using bivalence alone (see paper)

UC Consensus Algorithms

• A simple modification of PS1.1 produces an early-deciding algorithm for UC for $1 \leq t < n$ and $0 \leq f \leq t$ (HW2)
 – Two special cases when it is possible to do better: $t=1$ and $f=t-1$ (Charron-Bost, Schiper)
 • $f+1$ rounds
 – For $f=t$, we could obviously decide in $f+1$
Early Stopping

• Early stopping (i.e., halting in $O(f)$ rounds) is harder than early deciding:
 – Requires $\min(t+1,f+2)$ rounds for NUC [Dolev, Reischuk and Strong 90]

• HW2: Modify NUC algorithm to satisfy early stopping

• HW2: Modify UC alg. to satisfy early stopping