Planar 3SAT:
- NP-hard special case of 3SAT
- variable-clause bipartite graph is planar
 - edge \((v_i, c_j)\) whenever \(v_i\) or \(\overline{v}_i\) is in \(c_j\)
- remains planar after connecting variables
 in a cycle: \(v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n \rightarrow v_1\)
 - OR after connecting variables & clauses
 in a cycle \([\text{Lichtenstein-SICOMP 1982}]\)
- remains planar if we require \(v_i\)'s positive
 connections separated from negative connections
 i.e. split \(v_i\) into \(v_i\) \(\overline{v}_i\)
 positive connections negative connections
 \([\text{Dyer & Frieze 1986}]\)
- remains planar if we require all positive
 connections on one side of cycle & negative
 connections on other side \(\Rightarrow\) monotone 3SAT
 \([\text{De Berg & Khosravi - CoCoon 2010}]\)
- reductions from 3SAT
Planar rectilinear 3SAT: (essentially Lichtenstein 1982)
- variable = horizontal segment on x axis
- clause = horizontal segment (off x axis) + 3 vertical connections to variables
- no crossings/overlap (other than connections)

Planar monotone rectilinear 3SAT: as above
+ monotone 3SAT: each clause all positive or all negative
+ positive clauses above x axis
+ negative clauses below x axis
[de Berg & Khosravi - COCOON 2010]
- reduction from planar rectilinear 3SAT

Careful:
- if all clauses on one side of variable cycle (above x axis in planar rectilinear 3SAT)
then EP via tree dynamic program
⇒ if clauses also connected in a path
then EP (would force clauses on same side)
(wanted this e.g. for Push-1/Nintendo)
Planar 1-in-3SAT: [Dyer & Frieze 1986]
- NP-hard special case of 1-in-3SAT
- variable-clause bipartite graph is planar
+ remains planar after connecting variables in a cycle: $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n \rightarrow v_1$
- OR after connecting variables & clauses in a cycle

Reduction from Planar 3SAT:
- clause gadget

Planar positive 1-in-3SAT: no negations [Mulzer & Rote-J.ACM 2008]
+ remains planar after connecting variables in a cycle: $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_n \rightarrow v_1$

Rectilinear ...
- variable = horizontal segment on x axis
- clause = horizontal segment (off x axis)
 + 3 vertical connections to variables

Reduction from Planar 3SAT:
- equal & not-equal gadgets
- remove negations
- expand clauses (2 cases: $u=0$ or 1)
Careful: Planar NAE 3SAT is polynomial!
[Moret - SIGACT News 1988]

Reduction to Planar Max Cut: 2-color vertices of planar graph to maximize red-blue edges
\[s \in P \]
[Orlova & Dorfman 1972]
(in dual, red-blue edges are non-doubled edges in Chinese Postman problem)
- variable gadget / wire
- NAE clause

Planar X3C:
[Dyer & Frieze 1986]
- bipartite graph of elements vs. 3-sets is planar
- reduction from planar 1-in-3SAT

Planar 3DM:
[Dyer & Frieze 1986]
- special case where elements are 3-colored & each 3-set is trichromatic
- remains planar if elements connected in cycle
- reduction from planar 1-in-3SAT
Planar vertex cover:
- given a planar graph
- choose \(k \) vertices to hit all edges
- reduction from planar 3SAT
 - variable gadget: even cycle
 - clause gadget: triangle
- maximum degree 3

Planar (directed) Hamiltonian cycle:
- reduction from planar 3SAT
 - visit cycle through variables
 - variable gadget = ladder
 - clause gadget
 - can't jump var. \(\rightarrow \) clause \(\rightarrow \) other var.
- same reduction claimed for undirected

Shakashaka
- reduction from Planar 3SAT

Flattening fixed-angle chains:
- reduction from Partition
 [Soss & Toussaint 2000]
- reduction from planar monotone rectilinear 3SAT
 [Demaine & Eisenstat 2011]