3 ways to interpret graphs:

- directed (arcs)
- undirected (edges)
- bidirected (darts)

Let A be a finite set (arc set)
the set of darts is $A \times \{-1, 1\}$
$(a, 1)$ is often identified with the arc a.

A graph G is a pair (V, A) where V is a partition of the dart set. That is, nodes are defined by their outgoing darts.

the tail of arc a is the node $v \in V$
to which $(a, 1)$ belongs.

the head of arc a is the node $v \in V$
to which $(a, -1)$ belongs.

we will sometimes denote arcs by their endpoints
\[a = uv \] where $u(v)$ is a's tail (head)
\[u = (b, 1)(a, 1)(a, -1)(c, 1) \]

\[\omega = (e, 1)(d, 1)(c, 1) \]

\[v = (e, -1)(b, -1)(d, 1)(g, 1) \]

\[x = (g, -1) \]

Note that our definition does not allow isolated nodes.

Define the bijection \(\text{rev}(e, \sigma) = (e, -\sigma) \).

The graph obtained from \((V, A)\) by deleting an edge set \(A' \) is \((V', A - A')\), where \(V' \) is the restriction of \(V \) to the darts in \(A - A' \).

Contracting an edge \(uv \in A \) from \((V, A)\) produces the graph \((V', A')\) where \(A' = A - \{uv\} \) and the parts \(u, v, s \) of \(V \) are merged (the darts of \(uv \) are removed).

Think about making a contracted edge shorter and shorter until its endpoints meet. Not well defined for self loops!
Embeddings: We will use combinatorial embeddings (aka rotation system)

An embedding of \(G = (V,A) \) is a permutation \(\pi \) on \(A \times \{ +1,-1 \} \) whose orbits (cycles) are exactly the nodes (parts) of \(V \).

[think of \(\pi \) as specifying, for every \(v \in V \), the darts whose tail is \(v \) in, say, counterclockwise order.]

An embedded graph is the pair \(G = (\pi,A) \) we will also use the notation \(G_\pi \)

Faces: define \(\pi^* = \pi \circ \text{rev} \)

the faces of \(G = (\pi,A) \) are the orbits of \(\pi^* \)

[When working with topological embeddings the faces of \(G \) are the connected components of the set of points in the sphere that are not assigned to any node or edge.]
e.g.:

\[\pi = \left\{ (a, 1)(c, 1)(b, 1)(a, 1), (e, 1)(b, 1)(d, 1)(g, 1) \right\} \\
\left\{ (c, 1)(d, 1)(c, 1), (g, 1) \right\} \]

\[\pi^* = \left\{ (b, 1)(d, 1)(c, 1), (d, 1)(g, 1)(g, 1)(e, 1) \right\} \\
\left\{ (e, 1)(b, 1)(a, 1)(c, 1), (a, 1) \right\} \]

Note: In our drawing, every face except \(\infty \) corresponds to a clockwise simple cycle. \(\infty \) is called the infinite face. Combinatorial embeddings do not distinguish infinite face (think of embedding on a sphere).
note: with combinatorial embeddings each connected component has its own infinite face

note: for connected graphs, combinatorial embeddings are equivalent to topological embeddings

Dual graph: the dual of $\mathcal{G} = (\pi, A)$ is the embedded graph $\mathcal{G}^* = (\pi^*, A)$

Note: when drawing \mathcal{G}^* on \mathcal{G}, the order of darts in π^* corresponds to clockwise order around dual nodes.

"Look at \mathcal{G}^* from the other side of the paper"

$$\pi^* = \left((b,1) (d,-1) (c,1) \right) \left((d,1) (g,1) (g,-1) (e,-1) \right)$$

$$\left((e,1) (b,-1) (a,1) (c,1) \right) \left((a,-1) \right)$$
Lemma: the dual of the dual is the primal
\((G^*)^* = G\)

Proof: \((\pi^*)^* = (\pi \circ \text{rev}) \circ \text{rev} = \pi \square\)

How do combinatorial embeddings behave under deletions and contractions?

Deleting a dart \(d\) from \(G\) creates \(G'\),
where
\[\pi'(d') = \begin{cases}
\pi \circ \pi(d') & \text{if } \pi(d') = d \\
\pi(d') & \text{otherwise}
\end{cases}\]

Lemma: contracting an edge of \(G\) is equivalent to deleting it in the dual \(G^*\)
(recall contraction is not defined for self loops)

intuition: in \(G^*\), \(u\) and \(v\) are faces, deleting the edge \(uv\) in \(G^*\) merges these two faces, so in \(G\), \(u\) and \(v\) are merged.
Proof: Let us be the edge to be deleted. Let \((a_0, a_1, \ldots, a_k)\) and \((b_0, b_1, \ldots, b_k)\) be the orbits of \(\pi\) that correspond to \(u\) and \(v\), respectively, and such that \(a_0\) and \(b_0\) are the darts of \(uv\). Since \(uv\) is not a self loop the two orbits are distinct. We want to show that \((\pi^*)^*\) is identical to \(\pi\) except that these two orbits are merged into \((a_1, a_2, \ldots, a_k, b_1, b_2, \ldots, b_k)\)

\[
(\pi^*)^* [d] = (\pi^*)^* [\text{rev}(d)]
\]

\[
= \begin{cases}
\pi^* [\pi^* [\text{rev}(d)]] & \text{if } \pi^* [\text{rev}(d)] \text{ is deleted} \\
\pi^* [\text{rev}(d)] = \pi (d) & \text{otherwise}
\end{cases}
\]

Now, \(\pi^* [\text{rev}(a_k)] = \pi \circ \text{rev} \circ \text{rev}(a_k) = a_0\) and \(\pi^* [\text{rev}(b_k)] = \pi \circ \text{rev} \circ \text{rev}(b_k) = b_0\)

so \(a_k, b_k\) are the only two darts s.t. \(\pi^* [\text{rev}(d)]\) is deleted. Hence

\[
(\pi^*)^* [d] = \begin{cases}
\pi^* [a_0] = \pi [b_0] = b, & \text{if } d = a_k \\
\pi^* [b_0] = \pi [a_0] = a, & \text{if } d = b_k \\
\pi [d] & \text{otherwise}
\end{cases}
\]

so \((a_1, a_2, \ldots, a_k, b_1, b_2, \ldots, b_k)\) is a new orbit after the deletion in the dual.
Planarity, we say that an embedding π of $G=(V,A)$ is **planar** if it satisfies **Euler's formula**

$$n - m + f = 2K$$

- n: **# of nodes**
- m: **# of arcs**
- f: **# of faces**
- K: **# of connected components**

More generally, it can be shown that for any embedding π, $n - m + f = K (2 - 2g)$

g is the **genus** of the embedding. Planar embeddings have $g=0$.
you will prove in the PS that:

Sparsity lemma: for any planar embedded in which every face has size at least 3,

\[m \leq 3n - 6 \]

implies no self loops & no parallel edges

Interdigitating trees lemma: Let \(T \) be a spanning tree of a planar embedded graph \(G = (\pi, A) \). The edges not in \(T \) form a spanning tree of \(G^* \).

Proof: (see draft of book for complete proof using combinatorial embeddings)

we first show that the edges not in \(T \) form a forest in \(G^* \).

Consider a cycle \(C \) in \(G^* \). By the Jordan curve theorem \(C \) partitions the sphere into two connected regions. Each of these regions contains at least one node of \(G \). Hence, considered as curves in the plane \(T \) crosses \(C \), so \(C \) contains at least one edge of \(T \). This implies that the subgraph induced by edges not in \(T \) is acyclic in \(G^* \), namely a forest.
It remains to show that the forest is a spanning tree. Since T is a tree, $|T| = |V| - 1$.

By Euler’s formula $|V| - |A| + |V^*| = 2$.

Hence $|A| - |T| = |V^*| - 1$ so the forest is indeed a spanning tree. \(\square \)

For a spanning tree T and a non-tree edge e, the fundamental cycle of e with respect to T is the cycle that consists of e and of the unique simple path in T between the endpoints of e.
Cycle-Cut duality:

Recall that for a set X of nodes, the edge cut $S(X)$ is called a bond (or a simple cut) if both sides of the cut are connected.

Lemma: Let $G=(\pi, A)$ be a planar graph. A set C of edges is a simple cycle in G iff it is a simple cut in G^π.

Proof: (again, see book for a proof that uses just combinatorial embeddings)

Let C be a cycle in G. Let X be the set of faces of G (nodes of G^π) enclosed by C. By the Jordan curve theorem, any path between X and $V^\pi \setminus X$ must cross C, so the edges of C form a cut in G^π.

For any two dual nodes $f, g \in X$ there is a curve in the sphere that connects f and g and crosses no nodes of G. It follows that f and g are connected in the restriction of G^π to X.

A symmetric argument holds for the restriction of G^π to $V^\pi \setminus X$.

□
Connectivity

Lemma: For any face f of any embedded graph G_x, the darts comprising f are connected.

Proof: Let (d_0, d_1, \ldots, d_k) be the orbit of π^* that corresponds to f. We show that d_0, d_1, \ldots, d_k is a walk in G. For $1 \leq j \leq k$, $d_j = \pi^*(d_{j-1})$, so $\pi(\text{rev}(d_{j-1})) = d_j$, so d_j and $\text{rev}(d_{j-1})$ have the same tail in G_x, so the head of d_{j-1} is the tail of d_j. \qed

Connectivity Lemma: a set of darts forms a connected component in $G = (\pi, A)$ iff the same set forms a connected component in G^*.

Proof: suppose d, d' are connected in G, and let $d = d_0, d_1, d_2, \ldots, d_k = d'$ be a path of darts connecting them. For $i = 1, 2, \ldots, k$, the head of d_{i-1} in G is the tail of d_i. Thus, d_i and $\text{rev}(d_{i-1})$ are in the same orbit of π, so are on the same face in G^*. Hence, $\text{rev}(d_{i-1})$ and d_i are connected in G^* and so are d_{i-1} and d_i.
Compression: We define compression of an edge as deleting it in the dual.

Already saw that compressing a non-self loop is contraction.
How about compressing self loops?

If \(e \) is a self loop in \(G \) then it is a cut-edge in \(G^* \). Deleting \(e \) from \(G^* \) makes it disconnected, so makes \(G \) disconnected as well.