Hashing

Today

- Hashing Definition
- Desirable Properties
 - One-Way
 - Collision Resistant
- Finding Collisions
 - Birthday Attack
 - Floyd’s Two-Finger Algorithm
- Inverting H
 - Rainbow Tables

Definition

- a hash function H maps a universe U to a finite set S
- more concretely: $H : \{0, 1\}^* \rightarrow \{0, 1\}^\lambda$

Some Desirable Properties (more to come next lecture)

The definition is extremely loose. For example, a function that just truncates or is constant is technically a ‘valid’ hash function. Thus, we define some desirable properties. Each use case of hash functions will require a certain subset of these criteria.

- One-Way (non-invertible)
 - $x \leftarrow U, y = H(x)$
 - given y, infeasible to find x' s.t. $H(x') = y$
 - necessary for password storage
- Collision Resistant
 - difficult to find $x \neq x'$ s.t. $H(x) = H(x')$
 - necessary for hash tables, Bitcoin (digital signatures)
- There are more! Save for lecture on Monday

Finding Collisions

- Goal: break CR of H with $x \neq x'$, s.t. $H(x) = H(x')$
- Idea 1: store random $(x, H(x))$ pairs until two collide

Birthday Attack

- try random pairs until one collides, or you run out of resources
- succeeds with a relatively high constant probability in $O(\sqrt{|S|})$ time and memory (since you are checking $\Theta(n^2)$ pairs), but this is prohibitively large for $|S| \geq$ say 2^{128}.
- see Katz and Lindell Lemma 10.2 for proof.
• Idea 2: treat repeated applications of $H : S \rightarrow S$ as a directed graph, look for a cycle. Once found, last element on tail = x, last element on cycle = x'

• How do we know cycles exist? If we assume H is a random oracle (to be covered next lecture), then we can expect to “loop back” to some previously visited node after $\approx \sqrt{|S|}$ traversals (same intuition as birthday attack). Then, with probability $\approx 1 - \frac{1}{\sqrt{|S|}}$ (very close to 1), we loop back to a node that is not the first, and there is a tail of length > 0. Now let’s see how to use this...

Floyd’s Two-Finger Cycle Detection Algorithm

• We set two pointers a, b to a random node x
• We then advance b twice as fast as a until they meet again
 – Set $a = H(a)$, $b = H(H(b))$ until $a = b$

Informal Proof
 – If a and b begin on a node which leads to a cycle, they will eventually meet.
 * More formally: Thm: let x be a node on a tail of length t to a cycle of length n. Then after i iterations, $i \geq t$, the position of a and b are as follows:
 \begin{align*}
 a &= x_{(i-t) \mod n} \\
 b &= x_{(2i-t) \mod n}
 \end{align*}
 * Note that $\forall i \geq t$ s.t. i is a multiple of n, $a = b = x - t \mod n$
 * ; after $\max(t + (-t \mod n), n)$ iterations, a and b will meet at node $x - t \mod n$

• Suppose $a = b = x'$ after d iterations (we detected a cycle). How do we use this to find a collision?
 – We know $x' = x - t \mod n$
 – Set $a = x = x - t, b = x - t \mod n$, step each one edge at a time, remembering last element visited for each
 – After t steps, a and b will meet at x_0. Return $x_{-1}, x_{-1} \mod n$ as colliding pre-images

Analysis
 – Time:
 * Phase 1: $3 \max(t + (-t \mod n), n)$ hashes
 * Phase 2: $2t$ hashes
 * Overall: $\Theta(n + t)$ hashes
 – Memory:
 * 4 pointers, $O(1)$

Inverting Hash Functions

Rainbow Tables

• Goal: create a space/time tradeoff by storing head and tail of hash chains of length k
• First attempt:
 – Precomputation: assume we want to store hashes of n pre-images
 * choose $\frac{n}{k}$ random pre-images x_i
 * store $(x_i, H^{(k)}(x_i))$ for each x_i
 – Query: target hash y, want to find x s.t. $H(x) = y$
 * let $y_i = H^{(i)}(y)$
 * compute y_i for $i \in \{1 \ldots k\}$
• check if any \(y_i \) equals tail of any chain

 - if so, start at head of chain, hash until \(y \) reached, last pre-image inverts \(y \)

• Problem: only works for pre-images that are also images of \(H \), but most passwords people use don’t look like pseudorandom bits

 - Instead, create a reduction function \(R \) which maps images of \(H \) back into a target set \(P \), i.e. 10 letters followed by 2 digits

 - example of \(R \): treat input as 10 base 26 digits followed by 2 base 10 digits, and truncate the rest

• Modified Algorithm:

 - Precomputation:
 * choose \(\frac{n}{k} \) random pre-images \(p_i \in P \)
 * chain function is now \(C = R \circ H \)
 * store \((p_i, C^{(k)}(p_i)) \) for each \(p_i \)

 - Query: target hash \(y \), want to find \(p \in P \) s.t. \(H(p) = y \)
 * compute \(C^{(i)}(R(y)) \) for \(i \in [1, k] \)
 * proceed same as first version, but we risk false positives since \(R \) maps to a smaller set \(P \)
 * i.e. even if \(C^{(i)}(p) = R(y) \), it is possible that \(H(p) \neq y \), in which case we just skip this false positive and continue searching

• Analysis for querying \(n \) preimages:

 - Time:
 * Precomputation: \(\Theta(n) \)
 * Query: \(O(k) \)

 - Memory: \(\Theta(\frac{n}{k}) \)

• Combating Rainbow Tables:

 - Salt your passwords! Storing \(H(p)||r \) where \(r \) is a long random bit string makes precomputing a rainbow table infeasible