Admin:

Talk with TA this week about project.

Quiz: in-class 4/13 Wed. Open notes (No laptops or books)

Presentations start Wed 4/20/16

Today:

- Digital signatures
- Security of digital signatures
- Hash & Sign
- RSA - PKCS
- RSA - PSS
- El Gamal digital signatures
- DSA - NIST standard
Digital Signatures (compare "electronic signature", "cryptographic signature")

- Invented by Diffie & Hellman in 1976
 ("New Directions in Cryptography")
- First implementation: RSA (1977)
- Initial idea: switch PK/SK
 (enc with secret key \(\Rightarrow \) signature)
 (if PK decrypt it & looks OK then sig OK??)

Current way of describing digital signatures

- Keygen \((1^k) \rightarrow (PK, SK) \)
 - verification key \(\rightarrow \) signing key
- \(\text{Sign} (SK, m) \rightarrow g_{SK}^m \) [may be randomized]
 - signature
- \(\text{Verify} (PK, m, \sigma) = \text{True}/\text{False} \) (accept/reject)

Correctness:
(\(\forall m \)) \(\text{Verify} (PK, m, \text{Sign}(SK, m)) = \text{True} \)
Security of digital signature schemes

Definition: (weak) existential unforgeability under adaptive chosen message attack.

1. Challenger obtains (PK, SK) from KeyGen(1^t)
 Challenger sends PK to Adversary

2. Adversary obtains signatures to a sequence
 \(m_1, m_2, \ldots, m_g \)
 of messages of his choice. Here \(g = \text{poly}(t) \),
 and \(m_i \) may depend on signatures to \(m_1, m_2, \ldots, m_{i-1} \).
 Let \(\sigma_i = \text{Sign}(SK, m_i) \).

3. Adversary outputs pair \((m, \sigma^*_m)\)

Adversary wins if \(\text{Verify}(PK, m, \sigma^*_m) = \text{True} \)
and \(m \notin \{m_1, m_2, \ldots, m_g\} \)

Scheme is secure (i.e., weakly existentially unforgeable under adaptive chosen message attack) if

\[\text{Prob}[\text{Adv wins}] = \text{negligible} \]
Scheme is strongly secure if an adversary can't even produce a new signature for a message that was previously signed for him, i.e., Adv wins if \(\text{Verify}(PK, m, \sigma_x) = \text{True} \) and \((m, \sigma_x) \notin \{(m_1, \sigma_1), (m_2, \sigma_2), \ldots, (m_n, \sigma_n)\} \).
Digital signatures:
- Def of digital signature scheme
- Def of weak/strong existential unforgeability under adaptive chosen message attack.

Hash & Sign:
For efficiency reasons, usually best to sign cryptographic hash $h(M)$ of message, rather than signing M. Modular exponentiations are slow compared to (say) SHA-256.
Hash function h should be collision-resistant.
Signing with RSA - PKCS

- PKCS = "Public key cryptography standard"
 (early industry standard)
- Given message M to sign:
 Let \(m = H(M) \)
 Define \(\text{pad}(m) = \)
 \[0x00 01 FF FF ... FF 00 \| \text{hash-name} \| m \]
 where \# FF bytes enough to make \(|\text{pad}(m)| = |n| \) in bytes.
 where hash-name is given in ASN.1 syntax (ugly!)
- Seems secure, but no proofs (even assuming \(H \) is CR
 and RSA is hard to invert)
- \(\sigma(M) = (\text{pad}(M))^d \pmod{n} \)
PSS - Probabilistic Signature Scheme [Bellare & Rogaway 1996]

- RSA-based
- "Probabilistic" = randomized [one M has many sigs]

\[r \xleftarrow{\$} 50, 15 k_0 \]
\[w \leftarrow h(M \parallel r) \quad |w| = k_1 \]
\[r^* \leftarrow g_s(w) \oplus r \quad |r^*| = k_0 \]
\[y \leftarrow 0 \parallel w \parallel r^* \parallel g_s(w) \quad |y| = |n| \]

output \(\sigma(M) = y^d (\text{mod} \ n) \)

Verify \((M, \sigma)\):
\[y \leftarrow \sigma^e (\text{mod} \ n) \]
Parse \(y \) as \(b \parallel w \parallel r^* \parallel y \)
\[r^* \leftarrow r^* \oplus g_s(w) \]
return True iff \(b = 0 \) \& \(h(M \parallel r) = w \) \& \(g_s(w) = y \)
• We can model h, g_1, and g_2 as random oracles.

Theorems:

PSS is (weakly) existentially unforgeable against a chosen message attack in random oracle model if RSA is not invertible on random inputs.
El Gamal digital signatures

Public system parameters: prime p

- generator g of \mathbb{Z}_p^*

Keygen: $x \leftarrow \mathcal{R} \{0, 1, ..., p-2\}$
$SK = x$
$y = g^x \pmod{p}$
$PK = y$

Sign (M):

- $m = \text{hash} (M)$
 - [hash fn into \mathbb{Z}_{p-1}]
- $k \leftarrow \mathcal{R} \mathbb{Z}_{p-1}^*$
 - [gcd$(k,p-1)=1$]
- $r = g^k$
 - [hard work is indep of M]
- $s = \frac{(m-rx)}{k} \pmod{p-1}$
- $\sigma (M) = (r, s)$

Verify $(M, y, (r, s))$:

- Check that $0 < r < p$
 - (else reject)
- Check that $y^r s = g^m \pmod{p}$
 - where $m = \text{hash} (M)$
Correctness of El Gamal signatures:

\[y^r s = g^{rx} g^{sk} = g^{rx+sk} = g^m \quad (\text{mod} \ p) \]

\[\equiv \]

\[rx + ks \equiv m \quad (\text{mod} \ p-1) \]

or

\[s \equiv \frac{(m-rx)}{k} \quad (\text{mod} \ p-1) \]

(assuming \(k \in \mathbb{Z}_{p-1}^* \))
Theorem: ElGamal signatures are existentially forgeable (without h, or h=identity (note: this is CR!))

Proofs

Let \(e \leftarrow \mathbb{Z}_{p-1} \)
\[
\begin{align*}
 r &\leftarrow g^e \cdot y \pmod{p} \\
 s &\leftarrow -r \pmod{p-1}
\end{align*}
\]

Then \((r,s)\) is valid ElGamal sig. for message \(m = e \cdot s \pmod{p-1} \).

Check:
\[
\begin{align*}
 y^r r^s &= g^m \\
 g^{xr} (g^e y)^r &= g^{er} = g^e s = g^m \quad \square
\end{align*}
\]

But: It is easy to fix.

Modified ElGamal (Pointcheval & Stern 1996)

Sign \((M) \):
\[
\begin{align*}
 k &\leftarrow \mathbb{Z}_p^* \\
 r &= g^k \pmod{p} \\
 m &= h (M \| r) \quad \Leftarrow *** \\
 s &= (m - rx) / k \pmod{p-1} \\
\end{align*}
\]

\(\sigma (M) = (r, s) \)

Verify: Check \(0 < r < p \) and \(y^r s = g^m \) where \(m = h (M \| r) \).

Theorem: Modified ElGamal is existentially unforgeable against adaptive chosen message attack, in ROM, assuming DLP is hard.
Digital Signature Standard (DSS - NIST 1991)

Public parameters (same for everyone):

- \(q \) prime, \(|q| = 160 \) bits
- \(p = nq + 1 \) prime, \(|p| = 1024 \) bits
- \(g_0 \) generates \(\mathbb{Z}_p^* \)
- \(g = g_0^k \) generates subgroup \(G_q \) of \(\mathbb{Z}_p^* \) of order \(q \)

Keygen:

- \(x \leftarrow \mathbb{Z}_q \) SK
- \(y = g^x \pmod{p} \) PK

Sign \((m)\):

- \(k \leftarrow \mathbb{Z}_q^* \) (i.e. \(1 \leq k < q \))
- \(r = (g^k \pmod{p}) \pmod{q} \)
- \(|r| = 160 \) bits
- \(m = h(M) \)
- \(s = (m + rx) \pmod{q} \)
- \(|s| = 160 \) bits

Note: if \(k \) is reused for different messages \(m \), one could solve for \(x \) so it is not secure.

If \(k \) is reused for the same \(m \), we obtain the same signature so this is not a problem. If \(k \) is different for the same \(m \), it should be random and unknown (any known relation between the two \(k \)-s allows to solve for \(x \))

Bottomline: All of the above are enforced by \(k \) chosen at random from \(\mathbb{Z}_q \) for large enough \(q \).
Verify:
Check $0 < r < q$ & $0 < s < q$
Check $y^{r/s} g^{m/s} \equiv r \pmod{p} \pmod{q}$
where $m = h(M)$

Correctness:
\[
g^{(rx+m)/s} \equiv r \pmod{p} \pmod{q}
\]
\[
\equiv g^k = r \pmod{p} \pmod{q} \checkmark
\]

As it stands, existentially forgeable for $h = \text{identity}.$
Provably secure (as with Modified El Gamal)
if we replace $m = h(M)$ by $m = h(M \| r),$ as before.

Note: As with El Gamal, secrecy & uniqueness of k
is essential to security.