Admin: Pset #1 due Mon 2/22 (gradescope works by tonight)

Today: Cryptographic Hash Functions II ("Merkle Day")

- Merkle trees
- Puzzles
- PK crypto based on puzzles (Merkle puzzles)
- Construction
 - Merkle-Damgard
 - Keccak (SHA-3)

Readings:
- Katz/Lindell Chapter 5
- Paar/Pelzl Chapter 11
- Ferguson Chapter 5

News: Apple ordered to unlock iPhone
To authenticate a collection of n objects:

Build a tree with n leaves x_1, x_2, \ldots, x_n and compute authenticator node as fn of values at children... This is a "Merkle tree":

Root is authenticator for all n values x_1, x_2, \ldots, x_n

To authenticate x_i, give sibling of x_i & sibling of all its ancestors up to root

Apply to: time-stamping data

authenticate whole file system

Need: CR

Used in bitcoin...
Puzzles & Brute-Force Search

Want to create puzzle with solution known to creator that requires (on average) a fixed amount of work to solve.

Let \(h : \{0,1\}^* \to \{0,1\}^d \) be a crypto hash fn (e.g. SHA-256 with \(d = 256 \)).

The "puzzle" will be to invert \(h \), i.e. solve \(h(x) = y \) for \(x \) given \(y \).

To make this a puzzle, we restrict \(x \) to be in a known set \(S \) of possible solutions. Eg. \(S = \{0,1\}^s \) for \(s = 40 \).

To create a puzzle, pick \(x \in S \) at random, compute \(y = h(x) \).

Difficulty of solving \(x \) is \(|S|^{1/2} \) by brute-force search.

If \(s << d \) there will be no "false solutions" - no collisions.

Can create multiple (keyed) puzzles \((k,y)\) means solving \(h(k||x) = y \) for \(x \in S \).

Puzzle spec is \((h,k,S,y)\).

Puzzle creator knows solution

Can also have puzzles where creator doesn't know solution with truncated hashes
\[h : \{0,1\}^* \to \{0,1\}^s \]

Try \(x \) at random until \(h(x) = y \).
Hashcash (Adam Back, 1997)

- Anti-spam measure
- Requires sender to provide "proof of work" ("stamp")
- Email without POW or from sender on whitelist is discarded.
- POW:
 - Solve puzzle $h(k, r)$ ends in 20 zeros
 - where k = sender || receiver || date || time
 - r = variable to be solved for
- Include r in header as POW
- Easy for receiver to verify payment (POW)
- Takes $x \times 2^{20}$ trials to solve
- Doesn't work well against botnets 😞
Merkle puzzles

- First "public key" system (really: key agreement)

 Alice -- Eve -- Bob

Eve is passive eavesdropper.
How can Alice & Bob agree on a key?

Use puzzles (with restricted domain, so have unique solutions)

\[n = \# \text{puzzles of difficulty } 2^{n-1} = D \]

1. Bob chooses \(n \) values \(x_1, x_2, \ldots, x_n \) from \(S = \{0,1\}_3^n \)
 - Bob computes \(y_i = h(i \| x_i) \)
 - Bob sends \((y_i, E_{x_i}(K_i))\) to Alice for \(1 \leq i \leq n \), where \(K_i \in \{0,1\}_3^{256} \)

2. Alice picks random \(i \) from \([n] = \{1, 2, \ldots, n\} \)
 - Alice solves \(P_i \) for \(x_i \)
 - "decrypt to obtain \(K_i \)
 - sends \(h(K_i) \) to Bob

3. Bob & Alice use \(K_i \) to communicate secretly from then on.

 Time for good guys = \(O(n) + O(D) \)
 - Bob
 - Alice

 Time for Eve = \(O(n \cdot D) \)

For \(n = D = 10^9 \), "almost practical"!
Hash function construction ("Merkle-Damgard" style)

- Choose output size d (e.g. d = 256 bits)
- Choose "chaining variable" size c (e.g. c = 512 bits)
 [Must have c > d; better if c > 2d ...]
- Choose "message block size" b (e.g. b = 512 bits)
- Design "compression function" f
 \[f : \{0,1\}^c \times \{0,1\}^b \rightarrow \{0,1\}^c \]
 [f should be OW, CR, PR, NM, TCR, ...]
- Merkle-Damgard is essentially a "mode of operation"
 allowing for variable-length inputs:
 * Choose a c-bit initialization vector IV, \(c_0 \)
 [Note that \(c_0 \) is fixed & public.]
 * [Padding] Given message, append
 - \(10^k \) bits
 - fixed-length representation of length of input
 so result is a multiple of b bits in length:
 \[M = M_1, M_2 \ldots M_n \quad (n \text{ b-bit blocks}) \]
Theorem: IF \(f \) is CR, then so is \(h \).

Proof: Given collision for \(h \), can find one for
\(f \) by working backwards through chain. \(\square \)

Thm: Similarly for DW.

Common design pattern for \(f \):
\[
f(c_{i-1}, M_i) = c_{i-1} \oplus E(M_i, c_{i-1})
\]
where \(E(K, M) \) is an encryption function (block cipher) with \(b \)-bit key and
\(c \)-bit input/output blocks.
(Davies-Meyer construction)
Typical compression function (MD5):

- Chaining variable & output are 128 bits = 4 \times 32
- IV = fixed value
- 64 rounds; each modifies state (in reversible way) based on selected message word
- Message block b = 512 bits considered as 16 32-bit words
- Uses end-around XOR too around entire compression fn (as above)

Xiayun Wang discovered how to make collision for MD4, MD5
("Differential cryptanalysis")

\[g_6(y_2) = \begin{cases}
xy \\ xz \\ yz \\ x \oplus y \\ z \oplus x \\ y \oplus x \\
\end{cases} \] depending on round
\textbf{Keccak} = SHA-3

Keccak Sponge Construction
\begin{align*}
d & = \text{output hash size in bits} \\
c & = 384, 512, 1024 \text{ \ or \ } n \text{ bits} \\
r & = 25 \\
f & \in \{\text{invertible, efficient function}\} \\
\end{align*}

Input padded with \(0^n\) until length \(d + w\) is a multiple of \(r\).
\(f\) has \(24\) rounds (\(w = 64\), not quite\).