Admin:
Pset #1 posted; see TAs if necessary re groups
due 2/12

Hudson talk today at 4 pm in 32-6882 re macbook bootkits

Today:

- Finish Killian talk
- Encryption
- One-time pad (OTP)
- Hash fun (start: if time...)

Reading:

Katz & Lindell Chaps. 1, 2, 3, 5 (recommended)
Encryption

Goal: confidentiality of transmitted (or stored) message

Parties: Alice, Bob "good guys"
 Eve "eavesdropper", "adversary"

\[\text{Alice} \rightarrow M \rightarrow \text{Bob} \]
\[\text{Eve} \] \hspace{1cm} \text{communication channel} \]

\[M = \text{transmitted message} \]

In basic picture above, there is nothing to distinguish Bob from Eve; they both receive message.

Could have dedicated circuits (e.g., helium-filled pipes containing fiber optics, ...) or steganography.

Crypto approach: Bob knows a key \(K \) that Eve doesn't (Eve knows system)
- Alice can encrypt message so that knowledge of \(K \) allows decryption.
- Eve hears ciphertext, but learns "nothing" about \(M \).
With classical (non public key) crypto, Alice & Bob both know key K, shared symmetric key.

Algorithms:

$K \leftarrow \text{Gen}(1^\lambda)$ \hspace{1cm} \text{generate key of length } \lambda \hspace{1cm} (\lambda \text{ given in unary})

$C \leftarrow \text{Enc}(K, M)$ \hspace{1cm} \text{encrypt message } M \text{ with key } K \hspace{1cm} \text{result is ciphertext } C$

$M = \text{Dec}(K, C)$ \hspace{1cm} \text{decrypt } C \text{ using } K \text{ to obtain } M$

(Note Katz/Lindell conventions: \leftarrow for randomized operations, \leftarrow^R or $\leftarrow^{\#}$ is used for randomized operation.)

Setup:

Someone computes $K \leftarrow \text{Gen}(1^\lambda)$
(Someone may be Alice, or Bob)
Ensures that Alice & Bob both have K (and Eve doesn’t) \hspace{1cm} \text{(how?)}

Communication:

- K Alice $C \overset{\text{Enc}(K, M)}{\rightarrow}$ Bob K
- $C \overset{\text{Enc}(K, M)}{\rightarrow}$ Eve $??$
- $M = \text{Dec}(K, C)$
Security objective:

Eve can't distinguish Enc(\(K, M_1\)) from Enc(\(K, M_2\)),
even if she knows (or chooses) \(M_1\) and \(M_2\) \((M_1 \neq M_2)\)
of the same length).

(Encryption typically does not hide message length.)

Attacks:

- Known ciphertext
- Known CT/PT pairs \(\{\text{assumes } K \text{ is re-used}\}\)
- Chosen PT
- Chosen CT

\{Ciphertext indistinguishability\}
\{Semantic security\}

Similar "game" def:

- Alice picks key \(K\)
- Alice tells Eve message length \(\lambda\)
- Eve makes up two messages \(M_1, M_2\) of length \(\lambda\)
- Alice flips a bit \(b\) \((b = 1 \text{ or } b = 2)\)
- Alice gives Enc(\(K,b, M_b\)) to Eve
- Eve produces guess \(\hat{b}\) for \(b\).
 Eve wins if \(\hat{b} = b\).

Eve's advantage is \(\text{Prob}(\hat{b} = b) - \frac{1}{2}\).

Advantage should go to zero as \(|K|\) increases.
E.g., "negligible" means goes to zero faster
than \(1/\text{poly}(n)\) where \(n\) = security parameter.
One-Time Pad (OTP)

- Message, key, and ciphertext have same length (λ bits)
- Key K also called pad; it is random & known only to Alice & Bob.
 (Note: used by spies, key written on small pad...)

- Enc: $M = 101100...$ (binary string)
 $\oplus K = 011010...$ (mod-2 each column)
 $C = 110110...$

- Dec: Just add K again: $(m_i \oplus k_i) \oplus k_i = m_i \oplus (k_i \oplus k_i) = m_i \oplus 0 = m_i$

Joke: (Desmedt Crypto nonsense) OTP is weak, it only encrypts 1/2 the bits! leakage! Better to change them all!

Theorem: OTP is unconditionally secure.
(Secure against Eve with unlimited computing power.)
& k_i: information-theoretically secure.
One-Time Pad (Security proof)

\[M = 101100\ldots \quad (\text{\(\lambda\)-bit string}) \]
\[K = 011010\ldots \quad (\text{xor \(\lambda\)-bit 'pad' (key)}) \]
\[C = 110110\ldots \quad (\text{\(\lambda\)-bit ciphertext}) \]
\[M = 101100\ldots \]
\[(M \oplus K) \oplus K = M \oplus (K \oplus K) = M \oplus 0 = M \]

OTP is information-theoretically secure = Eve

can not break scheme, even with unlimited computing power

(Compare to computationally secure: requires assumption
that Eve has limited computing power (e.g., can't factor
large numbers).)

Model Eve's uncertainty via probabilities

\[P(M) = \text{Eve's prior probability that message is } M \]
\[P(M|C) = \text{Eve's posterior probability that message is } M, \]
\[\text{after having seen ciphertext } C. \]

Theorem: For OTP, \(P(M) = P(M|C) \)

\(\equiv \) "Eve learns nothing by seeing \(C \)"
Proof:

Assume $|M| = |K| = |C| = \lambda$.

$P(k) = 2^{-\lambda}$ \hspace{1cm} (all λ-bit keys equally likely)

Lemma: $P(C|M) = 2^{-\lambda}$

$P(C|M) = \text{Prob of } C, \text{ given } M$
$= \text{Prob that } K = C \oplus M$
$= 2^{-\lambda}$.

$P(C) = \text{Probability of seeing ciphertext } C$
$= \sum_{M} P(C|M) \cdot P(M)$
$= \sum_{M} 2^{-\lambda} \cdot P(M)$
$= 2^{-\lambda} \sum_{M} P(M)$
$= 2^{-\lambda} \cdot 1 = 2^{-\lambda}$ \hspace{1cm} (uniform)

$P(M|C) = \text{Prob of } M, \text{ after seeing } C$ (posterior)
$= \frac{P(C|M) \cdot P(M)}{P(C)}$ \hspace{1cm} (Bayes' Rule)
$= \frac{2^{-\lambda} \cdot P(M)}{2^{-\lambda}}$
$= P(M)$ \hspace{1cm} QED

This is perfect secrecy (except for length λ of M).
Users need to
- generate large secrets
- share them securely
- keep them secret
- avoid re-using them (google "Venona")

\[C_1 \oplus C_2 = (M_1 \oplus K) \oplus (M_2 \oplus K) = M_1 \oplus M_2 \]

from which you can derive \(M_1, M_2 \) often.

Theorem: OTP is malleable.

(That is, changing ciphertext bits causes corresponding bits of decrypted message to change.)

OTP does not provide any authentication of message contents or protection against modification ("mauling").

Note: OTP analyzed in terms of bits (digital abstraction)

In reality, Eve hears waveforms, and 0 or 1 might look different than 1 or 0