Admin:

Pset #3 due today
Project team & multi-psyce write-up due Friday

Today:

- Message Authentication Codes (MAC's)
- HMAC, CBC-MAC, PRF-MAC
- One-time MAC (problem stmt)
- Finite fields review
- One-time MAC (soln)
MAC (Message Authentication Code)

- Not confidentiality, but integrity (recall “CIA”)
- Alice wants to send messages to Bob, such that Bob can verify that messages originated with Alice & arrive unmodified.
- Alice & Bob share a secret key K
- Orthogonal to confidentiality; typically do both (e.g. encrypt, then append MAC for integrity)
- Need additional methods (e.g. counters) to protect against replay attacks

Alice $\xrightarrow{M, MAC_k(M)}$ Bob K

[Here M is message to be authenticated, which could be ciphertext resulting from encryption.]

- Alice computes $MAC_k(M)$ & appends it to M.
- Bob recomputes $MAC_k(M)$ & verifies it agrees with what is received. If \neq, reject message.
Adversary (Eve) wants to forge $M', \text{MAC}_k(M')$ pair that Bob accepts, without Eve knowing K.

- She may hear a number of valid $(M, \text{MAC}_k(M))$ pairs first, possibly even with M's of her choice (chosen msg attacks).
- She wants to forge for M' for which she hasn't seen $(M', \text{MAC}_k(M'))$ valid pair.

Two common methods:

$$\text{HMAC}(K, M) = h(k_1 || h(k_2 || M))$$

where $k_1 = K \oplus \text{opad}$ \{opad, ipad are fixed constants\}

$k_2 = K \oplus \text{ipad}$

$$\text{CBC-MAC}(K, M) \equiv \text{last block of CBC enc. of } M$$

Something like this is necessary...
MAC using random oracle (PRF):

\[MAC_k(M) = h(K || M) \]

(OK if \(h \) is indistinguishable from RO, which means, as we saw, for sequential hash fns, that last block may need special treatment.)

One-Time MAC (problem stmt):

Can we achieve security against unbounded Eve, as we did for confidentiality with OTP, except here for integrity?

Here key \(K \) may be "use-once" [as it was for OTP].

\[A \xrightarrow{K} B \]

\[T = MAC_k(M) \] ("tag")

- Eve can learn \(M, T \) then try to replace \(M, T \) with \(M', T' \) (where \(M' \neq M \)) that Bob accepts.
- Eve is computationally unbounded.
<table>
<thead>
<tr>
<th></th>
<th>Confidentiality</th>
<th>Integrity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconditional</td>
<td>OTP ✓</td>
<td>One-time MAC?</td>
</tr>
<tr>
<td>Conventional</td>
<td>Block ciphers (AES) ✓</td>
<td>MAC (HMAC) ✓</td>
</tr>
<tr>
<td>(symmetric key)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public-key</td>
<td>PK enc.</td>
<td>Digital signature</td>
</tr>
<tr>
<td>(asymmetric)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Finite fields:

System $(S, +, \cdot)$ s.t.

• S is a finite set containing "0" & "1"

• $(S, +)$ is an abelian (commutative) group with identity 0

\[
\begin{align*}
(a + b) + c &= (a + (b + c)) & \text{associative} \\
0 + a &= a & \text{identity 0} \\
(\forall a \exists b) a + b &= 0 & \text{(additive) inverses } b = -a \\
q + b &= b + q & \text{commutative}
\end{align*}
\]

• (S^*, \cdot) is an abelian group with identity 1

\[
\begin{align*}
S^* &= \text{nonzero elements of } S \\
(a \cdot b) \cdot c &= a \cdot (b \cdot c) & \text{associative} \\
1 \cdot a &= a & \text{identity 1} \\
(\forall a \in S^*)(\exists b \in S^*) a \cdot b &= 1 & \text{(multiplicative inverses)} b = a^{-1} \\
a \cdot b &= b \cdot a & \text{commutative}
\end{align*}
\]

• Distributive laws:

\[
\begin{align*}
a \cdot (b + c) &= a \cdot b + a \cdot c \\
(b + c) \cdot a &= b \cdot a + c \cdot a & \text{(follows)}
\end{align*}
\]

Familiar fields: \mathbb{R} (reals) are infinite, \mathbb{C} (complex).

For crypto, we're usually interested in finite fields, such as \mathbb{Z}_p (integers mod prime p).
Over a field, usual algorithms work (mostly).

E.g. solving linear eqns:

\[ax + b = 0 \pmod{\rho} \]

\[\Rightarrow x = a^{-1} \cdot (-b) \pmod{\rho} \] is soln.

\[3x + 5 = 6 \pmod{7} \]

\[3x = 1 \pmod{7} \]

\[x = 5 \pmod{7} \]
Notation: \(\text{GF}(q) \) is the finite field ("Galois field") with \(q \) elements.

Theorem: \(\text{GF}(q) \) exists whenever \(q = p^k \), \(p \) prime, \(k > 1 \)

Two cases:

1. \(\text{GF}(p) \) - work modulo prime \(p \)
 \[\mathbb{Z}_p = \text{integers mod } p = \{0, 1, \ldots, p-1\} \]
 \[\mathbb{Z}_p^* = \mathbb{Z}_p - \{0\} = \{1, 2, \ldots, p-1\} \]

2. \(\text{GF}(p^k) \) : \(k > 1 \)
 work with polynomials of degree < \(k \) with coefficients from \(\text{GF}(p) \)
 modulo fixed irreducible polynomial of degree \(k \)

Common case is \(\text{GF}(2^k) \)

Note: all operations can be performed efficiently

(inverses to be demonstrated)
"Repeated squaring" to compute a^b in field

(Here b is a non-negative integer)

\[a^b = \begin{cases}
1 & \text{if } b = 0 \\
\left(\frac{a}{a^{b/2}}\right)^2 & \text{if } b > 0, \text{ } b \text{ even} \\
a \cdot a^{b-1} & \text{if } b \text{ odd}
\end{cases} \]

Requires $\leq 2 \cdot \lg(b)$ multiplications in field (efficient)

\approx a few milliseconds for $a^b \pmod{p}$ 1024-bit integers

$\approx \Theta(k^3)$ time for k-bit inputs

Computing (multiplicative) inverses:

Theorem: (For $GF(p)$ called "Fermat's Little Theorem")

In $GF(q)$ \((\forall a \in GF(q)) a^{q-1} = 1\)

Corollary: \((\forall a \in GF(q)) a^q = a\)

Corollary: \((\forall a \in GF(q^k)) a^{-1} = a^{q-2}\)

Example: \(3^{-1} \pmod{7}\)

\[= 3^5 \pmod{7} \]

\[= 5 \pmod{7} \]
- How to find large (k-bit) random prime #?

 Generate & test:

 \[
 \text{do } p \leftarrow \text{random k-bit integer} \\
 \text{until } p \text{ is prime}
 \]

- Works because primes are "dense":

 \[
 \frac{2^k}{\ln(2^k)} \quad \text{k-bit primes (Prime Number Theorem)}
 \]

 \[
 \Rightarrow \text{one of every } \approx 0.69k \quad \text{k-bit integers is prime.}
 \]

- To test if a large randomly-chosen k-bit integer is prime, it suffices to test

 \[
 2^{p-1} \equiv 1 \pmod{p}
 \]

 - This works with high probability (w.h.p.) for random \(p \);

 doesn't work for adversarially chosen \(p \).

- See CLRS for Miller-Rabin primality test (randomized)

- Technically, above gives "base-2 pseudoprime", but this

 is almost always prime

- \exists deterministic poly-time primality test (Agrawal, Kayal, Saxena 2002):

 \[
 \text{Test } (x-a)^p = x^p - a \pmod{p} \quad x \text{ variable}
 \]

 which is true iff \(p \) is prime

 Test \(\mod{p} \) \& \(\mod{x^r-1} \) for small \(r \) \& small \(a \)'s.
One-time MAC (soln):

Idea:

\[T' = T + (T - T') \]

\[k = (a, b) \]

\(p \) public

\(K \) is use-once

\[T = \text{MAC}_k(M) = ax + b \pmod{p} \]

\[[x=M] \] \(\ast \)

Need two points to determine line; Eve hears just one: \((M, T)\)

\(p \) large prime (e.g. \(2^{128} + 51 \))

Key \(K = (a, b) \) \(0 \leq a < p, 0 \leq b < p \) \((p^2 \text{ keys}) \)

Security:

If adversary hears \((M, T)\) on the line, and replaces it with \((M', T')\) \([M' \neq M] \), then Bob accepts with probability \(\frac{1}{p} \).

PF: Hearing \((M, T)\) reduces set of possible keys to those satisfying \(\ast \). Nonetheless, for each possible \(T' \), there is an \((a, b)\) satisfying both \(\ast \) and

\[T = aM' + b \pmod{p} \] \(\ast \ast \)

all such keys are equally likely; Eve has no way to pick correct \(T' \).
Details:

For fixed $M, M' [M \neq M']$, fixed T s.t.

$$a \cdot M + b = T \quad (\text{mod } p) \quad (\ast)$$

For each T', \exists exactly one key (a, b) s.t. (\ast) and

$$a \cdot M' + b = T' \quad (\text{mod } p) \quad (\ast\ast)$$

holds:

$$a = (T - T')/(M - M') \quad (\text{mod } p)$$

$$b = T - a \cdot M \quad (\text{mod } p)$$

Thus Eve gains no information on $T' = MAC_e(M')$

by hearing (M, T). Method is information-theoretically

secure.

- True even if Eve can control M.

- Note that key K is twice as large as message M.