Pset #3 due Monday (3/19)
Form your project groups! Choose a topic...

- Hash fn applications (continued)
- Hash fn construction (Merkle-Damgård)
- "Merkle-Damgård Revisited" (Coron, Dodis, Melinaud, Puniya)
- Floyd's "Two-Finger Algorithm" for finding collisions.
4) **Commitments**

- Alice has value \(x \) (e.g., auction bid)
- Alice computes \(C(x) \) ("commitment to \(x \)"")
 & submits \(C(x) \) as her "sealed bid"
- When bidding has closed, Alice should be able to "open" \(C(x) \) to reveal \(x \)
- **Binding property:** Alice should not be able to open \(C(x) \) in more than one way! (She is committed to just one \(x \).)
- **Secrecy (hiding):** Auctioneer (or anyone else) seeing \(C(x) \) should not learn anything about \(x \).
- **Non-malleability:** Given \(C(x) \), it shouldn't be possible to produce \(C(x+1) \), say.

How:

\[
C(x) = h(r \| x) \quad r \in_R \{0,1\}^{256}
\]

To open: reveal \(r \& x \)

- Note that this method is randomized (as it must be for secrecy).

Need: OW, CR, NM

(really need more, for secrecy, as \(C(x) \) should not reveal partial information about \(x \), even.)
5. To authenticate a collection of \(n \) objects:

Build a tree with \(n \) leaves \(x_1, x_2, \ldots, x_n \) and compute authenticator node as \(f_n \) of values at children... This is a "Merkle tree":

Root is authenticator for all \(n \) values \(x_1, x_2, \ldots, x_n \)

To authenticate \(x_i \), give sibling of \(x_i \) & sibling of all his ancestors up to root.

Apply to: time-stamping data

Authenticating whole file system

\[
\text{Needs: CR}
\]
Hash function construction ("Merkle-Damgard" style)

- Choose output size \(d \) (e.g. \(d = 256 \) bits)
- Choose "chaining variable" size \(c \) (e.g. \(c = 512 \) bits)
 \[\text{Must have } c \geq d; \text{ better if } c > 2 \cdot d \ldots \]
- Choose "message block size" \(b \) (e.g. \(b = 512 \) bits)
- Design "compression function" \(f \)
 \[f : \{0,1\}^c \times \{0,1\}^b \rightarrow \{0,1\}^c \]
 \[\text{[} f \text{ should be OW, CR, PR, NM, TCR, \ldots]} \]
- Merkle-Damgard is essentially a "mode of operation"
 allowing for variable-length inputs:

* Choose a \(c \)-bit initialization vector \(IV, c_0 \)
 \[\text{[Note that } c_0 \text{ is fixed & public.]} \]
* [Padding] Given message, append
 - 10* bits
 - fixed-length representation of length of input

so result is a multiple of \(b \) bits in length:

\[M = M_1, M_2, \ldots, M_n \ldots \text{ (n b-bit blocks)} \]
Then:
\[h \left(\begin{array}{c} m_1 \\ c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_n \end{array} \right) \]

\[h(m) = c_n \] truncated to d bits

Theorem: If f is CR, then so is h.

Proof: Given collision for h, can find one for f by working backwards through chain. \(\square \)

Thm: Similarly for OW.

Common design pattern for f:

\[f(C_{i-1}, M_i) = C_{i-1} \oplus E(M_i, C_{i-1}) \]

where \(E(K, M) \) is an encryption function (block cipher) with b-bit key and c-bit input/output blocks.

(Davies-Meyer construction)
"Merkle-Damgard Revisited" (Coron, Dodis, Malinaud, Puniya)

Is MD a "good" method?

What does this mean?

Suppose that \(f \) is a random oracle (fixed input length)

\[
f : \{0,1\}^b \rightarrow \{0,1\}^c
\]

Then is \(MD^f \) indistinguishable from a \(VIL \ RO \)?

(\(VIL = "\text{variable input length}" \))

Adversary has access to:

A. \(MD^f \) and also to \(f \) (\(f \) is \(\text{FIL} \))

B. \(RO \ h \) and also to \(g \) (\(h \) is \(VIL \& g \text{ FIL} \))

where \(g \) is constructed to bear same relation to \(h \) as \(f \) does to \(MD^f \) ("simulator")

Note: \(g \) may call \(h \), but doesn't see \(\text{Adv's} \) calls to \(h \).
Standard construction MD^f fails (for $c=d$):

Can't build simulator g to bear right relation to h
(i.e. so that h appears to be MD^g)

Example of problem (message extension): (sketch)

h & g should satisfy

$$\text{MD}^g(m, \| m_2) = h(m, \| m_2) = g(g(IV, m_1), m_2)$$

Adv:

$$\begin{cases} \text{computes } u = h(m_1) \\ \text{computes } v = g(u, m_2) \\ \text{computes } w = h(m_1, m_2) \\
\begin{cases} \text{if } v = w : \text{answer "A world"} \\ \text{else: answer "B world"} \end{cases} \end{cases}$$

Adv always right in A world, and almost always right in B world, since simulator g doesn't know how to answer query $(\#)$. \[\text{[It didn't see query for } u, \text{ so even though it can access } h, \text{ it doesn't have ability to figure out } m_1, \text{ and so reply to } (\#) \text{ in way that makes it consistent with } h(m_1, m_2).] \]
But, it is not hard to fix MD construction so it becomes "indistinguishable from RO" (given FÎL RO
f)

[technically this is called "indifferentiability"].

Four methods: (any work to fix MD)

1. Encode m to be "prefix-free" before applying MD:
 e.g. 0||m, ||0||m2, ||0||m3, ... ||1||mn
 \[= \] length of message in bits
 mn padded with 10*

2. Drop output bits:
 Let \(d = c/2 \). Drop \(c/2 \) bits of output.

3. NMAC construction:
 \[g(MD^f(m)) \] \[\text{[g indep. function} \]
 \[\text{from } \{0,1\}^c \text{ to } \{0,1\}^d \]

4. HMAC construction:
 \[MD^f(MD^f(m)) \]

* With such methods, it is then "safe" to treat (modified) MD^f as a RO (assuming f is indistinguishable from a FIL RO.)
Floyd's "Two-Finger" algorithm for finding collisions

Let $f : \{0,1\}^n \rightarrow \{0,1\}^n$

Pick random x_0.

Let $x_{i+1} = f(x_i)$ for $i = 1, 2, \ldots$, eventually loops:

$$x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots \rightarrow x_t \rightarrow x_{t+1} \rightarrow \ldots \rightarrow x_d \rightarrow \ldots \rightarrow x_{t+c-1}$$

Tail of length c

Cycle of length c

If f is "random":

$$E(t) = E(c) = \Theta(\sqrt{n}) = \Theta(2^{n/2}) \quad \text{B.P.}$$

Two Finger alg:

1. Finger 1: x_0, x_1, x_2, \ldots (single speed)
2. Finger 2: x_0, x_2, x_4, \ldots (double speed)

Until $x_d = x_{2d}$

[Lemma: $d \equiv 0 \pmod{c}$]

Then:

- Finger 1 starts at x_d, x_{d+1}, \ldots (both single speed)
- Finger 2: \ldots, x_0, x_1, \ldots

Until they collide at x_t

Previous step gives $f(x_{t-1}) = f(x_{t+c-1})$ collision!