Admin:

Today:

Pset #2 due Friday; email to 6.857-staff@mit.edu

Project proposal presentations on Monday!

* Hash function properties
* Hash function applications
Hash function desirable properties:

1. **"One-way"** (pre-image resistance)
 "Infeasible", given \(y \in \mathbb{Z}_d^{13} \) to find any \(x \) s.t. \(h(x) = y \) (\(x \) is a "pre-image" of \(y \))

 \[
 h : \{0,1\}^* \rightarrow \{0,1\}^{13}
 \]

 (Note that a "brute-force" approach of trying \(x \)'s at random requires \(\Theta(2^d) \) trials (in ROM),)

2. **"Collision-resistance"** (strong collision resistance)
 "Infeasible" to find \(x, x' \) s.t. \(x \neq x' \) and \(h(x) = h(x') \) (a "collision")

 \[
 h(x) = h(x')
 \]

 In ROM, requires trying about \(2^{d/2} \) \(x \)'s \((x_1,x_2,...)\) before a pair \(x_i,x_j \) colliding is found. (This is the "birthday paradox",)}
Note that collisions are unavoidable since
\[|E_{0,1}^{\mathbb{Z}^d}| = \infty \]
\[|E_{0,1}^{\mathbb{Z}^d}| = 2^d \]

Birthday paradox detail:

If we hash \(x_1, x_2, \ldots, x_n \) (distinct strings)
then
\[
E(\# \text{ collisions}) = \sum_{i \neq j} \Pr(h(x_i) = h(x_j))
\]
\[
= \binom{n}{2} \cdot 2^{-d} \quad \text{[if h "uniform"]}
\]
\[
= \frac{n^2 \cdot 2^{-d}}{2}
\]

This is \(> 1 \) when \(n \gg 2^{(d+1)/2} \approx 2^{d/2} \)

The birthday paradox is the reason why hash function outputs are generally twice as big as you might naively expect; you only get 80 bits of security (w.r.t. CR) for a 160-bit output.

With some tricks, memory requirements can be dramatically reduced.
(3) "Weak collision resistance" (target collision resistance, 2nd pre-image resistance)

"Infeasible" given $x \in \mathcal{E}_0, \mathcal{E}_1^*$, to find $x' \neq x$ s.t. $h(x) = h(x')$.

Like CR, but one pre-image given & fixed.

(In ROM, can find x' in time $\Theta(2^d)$ (as for OW, since knowing x doesn't help in ROM).

(4) Pseudo-randomness

"h is indistinguishable under black-box access from a random oracle"

(To make this notion workable, really need a family of hash functions, one of which is chosen at random. A single, fixed, public hash function is easy to identify...)

(5) Non-malleability

"Infeasible", given $h(x)$, to produce $h(x')$ where x and x' are "related" (e.g. $x' = x + 1$).

These are informal definitions...
Theorem: If \(h \) is CR, then \(h \) is TCR.
(But Converse doesn't hold.)

Theorem: \(h \) is OW \(\iff \) \(h \) is CR
(neither implication holds)
But if \(h \) "compresses", then CR \(\Rightarrow \) OW.

Hash function applications

1. Password storage (for login)
 - Store \(h(PW) \), not PW, on computer
 - When user logs in, check hash of his PW against table.
 - Disclosure of \(h(PW) \) should not reveal PW (or any equivalent pre-image)
 - Need OW

2. File modification detector
 - For each file \(F \), store \(h(F) \) securely
 (e.g. on off-line DVD)
 - Can check if \(F \) has been modified by recomputing \(h(F) \)
 - Need WCR (aka TCR)
 (Adversary wants to change \(F \) but not \(h(F) \).)
 - Hashes of downloadable software = equivalent problem.
3. Digital signatures ("hash & sign")

\(PK_A = \text{Alice's public key (for signature verification)} \)

\(SK_A = \text{Alice's secret key (for signing)} \)

Signing: \(\sigma = \text{sign} \left(SK_A, M \right) \) [Alice's sign on \(M \)]

Verify: \(\text{Verify} \left(M, \sigma, PK_A \right) \in \{ \text{True, False} \} \)

Adversary wants to forge a signature that verifies.

- For large \(M \), easier to sign \(h(M) \):

\(\sigma = \text{sign} \left(SK_A, h(M) \right) \) ["hash & sign"]

Verifier recomputes \(h(M) \) from \(M \), then verifies \(\sigma \).

In essence, \(h(M) \) is a "proxy" for \(M \).

- **Need CR** (Else Alice gets Bob to sign \(x \),

where \(h(x) = h(x') \), then claims

Bob really signed \(x' \), not \(x \).

- **Don't need OW** (e.g. \(h = \text{identity} \) is OK here.)