6.852 Lecture 7

- Asynchronous systems
- Formal model
 - I/O automata
 - behaviors
 - simulations
 - composition
- Reading: Chapter 8
Asynchronous systems

- No timing assumptions
 - no rounds
- Asynchronous networks
 - nodes communicating via channels
- Asynchronous shared memory
 - processes communicating via shared objects
Asynchronous network

p₁

init(v)₁

decide(v)₁

send(m)₁,₂

C₁,₂

receive(m)₁,₂

C₂,₁

send(m)₂,₁

receive(m)₂,₁

p₂
Specifying problems and systems

- Processes and channels are automata
 - take **actions** to change state
 - reactive
 - interact with environment via input and output actions
 - not just map from input values to output values
- Behavior
 - we observe **externally visible** actions
 - state is hidden
 - interleaving semantics
 - behavior is sequence of actions
 - problems specify allowable behaviors
Input/output automaton

- General mathematical model
 - very little structure
- Designed for “structured” system description
 - composition
 - hierarchical description/reasoning
- Supports good proof techniques
 - invariants
 - simulation relations
 - compositional reasoning
Input/output automaton

• State transition system
 – transitions labeled by actions

• Actions classified as input, output, internal
 – input, output are externally visible
 – output, internal are locally controlled
Input/output automaton

- \(\text{sig}(A) = (\text{in}(A), \text{out}(A), \text{int}(A)) \)
 - input, output, internal actions (disjoint)
 - \(\text{acts}(A) = \text{in}(A) \cup \text{out}(A) \cup \text{int}(A) \)

- \(\text{states}(A) \)

- \(\text{start}(A) \subseteq \text{states}(A) \)

- \(\text{trans}(A) \subseteq \text{states}(A) \times \text{acts}(A) \times \text{states}(A) \)
 - input-enabled

- \(\text{tasks}(A) \), partition of local(\(A\))
 - needed for liveness
Input/output automaton

- A **step** of an automaton is an element of transitions.
- Action π is **enabled** in a state s if there is a step (s, π, s') for some s'.
- I/O automata must be **input-enabled**:
 - every input action is enabled in every state,
 - captures the idea that the automaton cannot control inputs,
 - enables compositional reasoning.
- Tasks correspond to “threads of control”:
 - used to define fairness,
 - needed to guarantee liveness.
Channel automaton

- Reliable unidirectional FIFO channel for 2 processes
 - fix message “alphabet” M
- signature
 - input actions: $\text{send}(m)$ for $m \in M$
 - output actions: $\text{receive}(m)$ for $m \in M$
 - no internal actions
- states
 - queue: FIFO queue of M, initially empty
Channel automaton

- **trans**
 - send(m)
 - effect: add m to (end of) queue
 - receive(m)
 - precondition: m is at head of queue
 - effect: remove head of queue

- **tasks**
 - all receive actions in one task
Channel automaton

- **trans**
 - send(m)\textsubscript{i,j}
 - effect: add m to (end of) queue
 - receive(m)\textsubscript{i,j}
 - precondition: m is at head of queue
 - effect: remove head of queue

- **tasks**
 - all receive actions in one task
Executions

• An I/O automaton executes as follows:
 – start at some start state
 – repeatedly take step from current state to new state

• Formally, an execution is a sequence:
 – \(s_0 \pi_1 s_1 \pi_2 s_2 \pi_3 s_3 \pi_4 s_4 \pi_5 s_5 \ldots \) (if finite, end in state)
 – \(s_0 \) is a start state
 – \((s_i, \pi_{i+1}, s_{i+1}) \) is a step (i.e., in trans)

\(\lambda, \text{send}(a), a, \text{send}(b), ab, \text{receive}(a), b, \text{receive}(b), \lambda \)
Executions

- An I/O automaton executes as follows:
 - start at some start state
 - repeatedly take step from current state to new state

- Formally, an execution is a sequence:
 - $s_0 \pi_1 s_1 \pi_2 s_2 \pi_3 s_3 \pi_4 s_4 \pi_5 s_5 \ldots$ (if finite, end in state)
 - s_0 is a start state
 - $(s_i, \pi_{i+1}, s_{i+1})$ is a step (i.e., in trans)

λ, send(a), a, send(b), ab, receive(a), b, receive(b), \lambda
Invariants and reachable states

- A state is **reachable** if it appears in some execution.
 - equivalently, at the end of some finite execution
- An **invariant** is a predicate that is true on every reachable state.
 - main tool for proving properties of concurrent algorithms
 - typically prove by induction on length of execution
Traces

A trace of an execution is the subsequence of external actions in the execution

- denoted trace(α), where α is an execution
- models “observable behavior”

\[\lambda, \text{send}(a), a, \text{send}(b), ab, \text{receive}(a), b, \text{receive}(b), \lambda \]

send(a), send(b), receive(a), receive(b)
Trace properties

• A **trace property** P is a pair of:
 – sig(P): external signature (i.e., no internal actions)
 – traces(P): set of sequences of actions in sig(P)
 – can specify allowable behaviors

• Automaton A satisfies trace property P if
 – extsig(A) = sig(P) and traces(A) ⊆ traces(P)
 – extsig(A) = sig(P) and fairtraces(A) ⊆ traces(P)
Automata as specifications

- Every I/O automaton specifies a trace property
 - $(\text{extsig}(A), \text{traces}(A))$
 - we can use an automaton as a problem specification

- Hierarchical proofs
 - important strategy for proving correctness of complex asynchronous distributed algorithms
 - automaton A implements B if
 - $\text{extsig}(A) = \text{extsig}(B)$
 - $\text{traces}(A) \subseteq \text{traces}(B)$
 - define a series of automata, each implementing the next
 - first automaton models algorithm/system; last captures spec
Simulation relations

• Most common method to prove one automaton implements another

• Similar to technique for synchronous algorithms
 – map states in one to states of other
 – show correspondence holds initially, is preserved each round
 – also similar to abstraction function for data type implementation

• R is a simulation relation from A to B provided:
 – $s_A \in \text{start}(A)$ implies there exists $s_B \in \text{start}(B)$ such that $s_A \sim s_B$
 – if s_A, s_B are reachable states of A and B, $s_A \sim s_B$ and (s_A, π, s'_A) is a step, then there exists an exec fragment β starting with s_B and ending in s'_B such that $s'_B \sim s'_A$ and $\text{trace}(\pi) = \text{trace}(\beta)$
Simulation relations

- R is a simulation relation from A to B provided:
 - $s_A \in \text{start}(A)$ implies there exists $s_B \in \text{start}(B)$ such that $s_A \, R \, s_B$
 - if s_A, s_B are reachable states of A and B, $s_A \, R \, s_B$ and (s_A, π, s'_A) is a step, then there exists an exec fragment β starting with s_B and ending in s'_B such that $s_B \, R \, s'_A$ and $\text{trace}(\pi) = \text{trace}(\beta)$
Simulation relations

- Theorem: If there is a simulation relation from A to B then $\text{traces}(A) \subseteq \text{traces}(B)$.

$s_{0,A}$ π_1 $s_{1,A}$ π_2 $s_{2,A}$ π_3 $s_{3,A}$ π_4 $s_{4,A}$ π_5 $s_{5,A}$
Simulation relations

- Theorem: If there is a simulation relation from A to B then traces(A) \(\subseteq \) traces(B).

\[
\begin{align*}
S_{0,A} & \xrightarrow{\pi_1} S_{1,A} \xrightarrow{\pi_2} S_{2,A} \xrightarrow{\pi_3} S_{3,A} \xrightarrow{\pi_4} S_{4,A} \xrightarrow{\pi_5} S_{5,A} \\
S_{0,B} & \xrightarrow{R} S_{1,A} \xrightarrow{\pi_2} S_{2,A} \xrightarrow{\pi_3} S_{3,A} \xrightarrow{\pi_4} S_{4,A} \xrightarrow{\pi_5} S_{5,A}
\end{align*}
\]
Simulation relations

- Theorem: If there is a simulation relation from A to B then $\text{traces}(A) \subseteq \text{traces}(B)$.

![Simulation Diagram]

- $s_{0,A} \xrightarrow{\pi_1} s_{1,A} \xrightarrow{\pi_2} s_{2,A} \xrightarrow{\pi_3} s_{3,A} \xrightarrow{\pi_4} s_{4,A} \xrightarrow{\pi_5} s_{5,A}$
- $s_{0,B} \xrightarrow{\beta_1} s_{1,B}$
- R
Simulation relations

- Theorem: If there is a simulation relation from A to B then \(\text{traces}(A) \subseteq \text{traces}(B)\).
Fairness

• Recall tasks(A): partition of local(A)
 – task corresponds to “thread of control”
 – used to define “fair” executions
 • a “thread” that is continuously enabled gets to take a step
 – needed to prove liveness

• Formally, an execution α is **fair** to $C \in \text{tasks (A)}$ if:
 – α is finite and C is not enabled in final state
 – α is infinite and either
 • infinitely many events in C occur in α; or
 • C is not enabled in infinitely many states in α
Fairness

• Example: Channel
 - only one task (all receive actions)
 - an finite execution of Channel is fair iff queue is empty
 - Is every infinite execution of Channel fair?

• Recall alternative defn of “A satisfies P”
 - if extsig(A) = sig(P) and fairtraces(A) ⊆ traces(P)
 - weaker than traces(A) ⊆ traces(P)

• Fairness is a liveness property
Safety and liveness

- **Safety** property: “bad” thing doesn't happen
 - nonempty
 - prefix-closed
 - limit-closed

- **Liveness** property: “good” thing happens eventually
 - every finite sequence over acts(P) has an extension (is a prefix of) some sequence in traces(P)
Composition

• "Put multiple automata together"
 - output actions of one may be input actions of others

• Look first at composing two automata
 - generalize to composing infinitely many automata (in book)

• Recall:
 - \(\text{sig}(A) = (\text{in}(A), \text{out}(A), \text{int}(A)) \)
 - \(\text{local}(A) = \text{out}(A) \cup \text{int}(A) \)

• Two automata \(A \) and \(B \) are **compatible** if
 - \(\text{local}(A) \) and \(\text{local}(B) \) are disjoint
 - \(\text{int}(A) \) and \(\text{acts}(B) \) are disjoint
 - \(\text{int}(B) \) and \(\text{acts}(A) \) are disjoint
Composition

- $A \times B$, composition of A and B
 - $\text{int}(A \times B) = \text{int}(A) \cup \text{int}(B)$
 - $\text{out}(A \times B) = \text{out}(A) \cup \text{out}(B)$
 - $\text{in}(A \times B) = \text{in}(A) \cup \text{in}(B) - (\text{out}(A) \cup \text{out}(B))$
 - $\text{states}(A \times B) = \text{states}(A) \times \text{states}(B)$
 - $\text{start}(A \times B) = \text{start}(A) \times \text{start}(B)$
 - $\text{trans}(A \times B)$: includes (s, π, s') iff
 - $(s_A, \pi, s'_A) \in \text{trans}(A)$ if $\pi \in \text{acts}(A)$; $s_A = s'_A$ otherwise
 - $(s_B, \pi, s'_B) \in \text{trans}(B)$ if $\pi \in \text{acts}(B)$; $s_B = s'_B$ otherwise
 - $\text{tasks}(A \times B) = \text{tasks}(A) \cup \text{tasks}(B)$
Composition

- Projection
- Execution pasting
- Trace pasting
Next lecture

• Finish up composition
 – theorems
 – examples

• Basic asynchronous network algorithms
 – Chapter 15