6.852 Lecture 3

• Algorithms in general synchronous networks (continued)
 – breadth-first search
 – broadcast, convergecast
 – shortest paths
 – minimum-weight spanning tree
Last lecture

• Lower bound for comparison-based leader election in a ring

• Leader election in general synchronous networks
 – flooding
 – reducing message complexity
 – simulations
Breadth-first search

• Assume
 – strongly connected digraph, UIDs
 – no knowledge of size, diameter of network
 – distinguished source node \(i_0 \)

• Required: breadth-first spanning tree
 – spanning: contains every node
 – breadth-first: node at distance \(d \) from \(i_0 \) appears at depth \(d \) in tree
 – output: parent of each node (except \(i_0 \))
Breadth-first search
Breadth-first search
Breadth-first search

- “Mark” nodes as they get incorporated into tree
 - initially only i_0 is marked
 - round 1: i_0 sends “search” to out-nbrs
 - every round: unmarked nodes that receive “search”
 - marks self
 - designates one process that sent “search” as parent
 - send “search” to out-nbrs next round
Breadth-first search

- “Mark” nodes as they get incorporated into tree
 - initially only i_0 is marked
 - round 1: i_0 sends “search” to out-nbrs
 - every round: unmarked nodes that receive “search”
 - marks self
 - designates one process that sent “search” as parent
 - send “search” to out-nbrs next round

What state variables do we need?
Breadth-first search

Round 1 (msgs)
Breadth-first search

Round 1 (trans)
Breadth-first search

Round 2 (start)
Breadth-first search

Round 2 (msgs)
Breadth-first search

Round 2 (trans)
Breadth-first search

Round 3 (start)
Breadth-first search

Round 3 (msgs)
Breadth-first search

Round 3 (trans)
Breadth-first search

Round 4 (start)
Breadth-first search

Round 4 (msgs)
Breadth-first search

Round 4 (trans)
Breadth-first search

Round 5 (start)
Breadth-first search

Round 5 (msgs)
Breadth-first search

Round 5 (trans)
Breadth-first search

- “Mark” nodes as they get incorporated into tree
 - initially only i_0 is marked
 - round 1: i_0 sends “search” to out-nbrs
 - every round: **unmarked** nodes that receive “search”
 - marks self
 - designates one process that sent “search” as parent
 - send “search” to out-nbrs **next** round
 - need flag to keep track of when to send

- **Complexity:** time = diameter+1; msg = $|E|$
Breadth-first search

• Child pointers?
 – easy with bidirectional communication
 – what if not?
 • message bit complexity

• Termination?
 – with bidirectional communication?
 • “convergecast”
 – with unidirectional communication?
Applications of BFS

- **Message broadcast**
 - “piggyback” (watch message bit complexity)
 - complexity: time = \(O(\text{diameter}) \); msg = \(O(n) \)

- **Global computation**
 - sum, or any accumulation: convergecast
 - complexity: time = \(O(\text{diameter}) \); msg = \(O(n) \)

- **Leader election (without knowing diameter)**
 - everyone start BFS, finds max UID
 - complexity: time = \(O(\text{diam}) \); msg = \(O(n \ |E|) \) or \(O(\text{diam} \ |E|) \)

- **Compute diameter**
 - all do BFS; convergecast to find height of each BFS tree; convergecast to find max of all heights
Shortest paths

- Generalization of BFS
 - assume weighted digraph, UIDs, i_0
 - weights represent some (communication) cost (known)
 - all nodes know n (need for termination!)
 - require shortest-paths tree rooted at i_0
 - paths should have min weight
 - output parent, “distance” from root (by weight)
Shortest paths
Shortest paths
Shortest paths

- Bellman-Ford (adapted from sequential alg)
 - “relaxation algorithm”
 - nodes maintain: dist, parent (best so far), round#
 - initially i0 has dist 0, all other ∞; parents all null
 - each round all nodes:
 - send dist to all out-nbrs
 - relaxation: compute new dist = $\min(d_{ij}, d_{jk} + w_{kj})$
 - update parent if dist changes
 - stop after n-1 rounds
Shortest paths

Round 1 (msgs)
Shortest paths

Round 1 (trans)
Shortest paths

Round 2 (start)
Shortest paths

Round 2 (msgs)
Shortest paths

Round 2 (trans)
Shortest paths

Round 3 (start)
Shortest paths

Round 3 (msgs)
Shortest paths

Round 3 (trans)
Shortest paths

Round 4 (start)
Shortest paths

Round 4 (msgs)
Shortest paths

Round 4 (trans)
Shortest paths

Round 5 (start)
Shortest paths

Round 5 (msgs)
Shortest paths

Round 5 (trans)
Shortest paths

End configuration
Shortest paths

- Complexity: time = n-1; msg = (n-1) |E|
 - can we reduce time complexity? diameter?
 - what about message complexity?

- Proof?
Shortest paths

- Complexity: time = n-1; msg = (n-1) |E|
 - can we reduce time complexity? diameter?
 - what about message complexity?

- Proof?

- Correctness condition?
Shortest paths

• Complexity: time = n-1; msg = (n-1) |E|
 - can we reduce time complexity? diameter?
 - what about message complexity?

• After round n-1, for each process i
 - dist$_i$ = shortest distance from i_0
 - parent$_i$ = predecessor on shortest path from i_0

• Proof?
Shortest paths

- Invariant: after r rounds:
 - every process i has its dist (and parent) correspond to shortest path from i_0 to i with at most r edges

- Proof (by induction):
 - base case: trivial for $r = 0$
 - inductive step:
 - fix i, let p be pred on shortest path from i_0 with $\leq r$ edges
 - by ind hyp, after round $r-1$, $dist_p$ and $parent_p$ correspond to shortest path from i_0 to p with at most $r-1$ edges
 - $dist_i(r) = dist_p(r-1) + w_{pi}$ correct by “optimal substructure”
Minimum spanning tree

• Another classic problem (lots of seq algs)

• Assume
 – weighted **undirected** graph (bidirectional comm)
 • all weights nonnegative
 – processes have UIDs
 – know weights of incident edges, bound on \(n \)

• Require
 – each process knows which incident edge is in MST
Minimum spanning tree

• Graph theory definitions (for undirected graphs)
 – tree: connected acyclic graph
 – spanning: property of a subgraph that it includes all nodes of a graph
 – forest: an acyclic graph (not necessarily connected)
 – component: a maximal connected subgraph

• Common strategy for computing MST:
 – start with trivial spanning forest (n isolated nodes)
 – repeatedly (n-1 times): for any component, add the minimum-weight outgoing edge (MWOE) of that component to E
 – all components can choose simultaneously, except...
Minimum spanning tree
Minimum spanning tree

• Assume for now that weights are unique
 – implies there is a unique MST
 – components can choose concurrently

• GHS (Gallager Humblet Spira) algorithm
 – very influential (Dijkstra prize)
 – designed for asynchronous setting: simplified here
 – we will revisit it in asynchronous networks
Minimum spanning tree

- GHS
 - proceeds in phases, each with $O(n)$ rounds
 - length of phases is fixed; this is what n is used for
 - in each phase, graph is partitioned into components
 - phase k component has size at least 2^k
 - components identified by UID of leader
 - each component is a tree rooted at leader
 - every phase $k+1$ component contains of two or more phase k components
Minimum spanning tree

- GHS phases consists of multiple stages
 - leader finds MWOE of its component
 - broadcast search (via tree edges)
 - convergecast MWOE (via tree edges)
 - leader chooses minimum weight edge
 - combine components joined by MWOE
 - inform nodes at either end of MWOEs of merger
 - choose new leader
 - larger UID adjacent to “shared” MWOE
 - broadcast to new (merged) component
- GHS terminates when no more outgoing edges
Minimum spanning tree

- GHS algorithm simplified for synchronous setting
- Proof?
- Complexity?
 - time: $O(n \log n)$
 - $msg: O((n + |E|) \log n)$
 - actually $O(n \log n + |E|)$
Where did we use synchrony?

- Leader election
- Breadth-first search
- Shortest paths
- Minimum spanning tree

We will see these algorithms again in the asynchronous setting.