6.852: Distributed Algorithms

- Leader election in a synchronous ring
 - lower bound for comparison-based algorithms
 - non-comparison-based algorithms
- Algorithms in general synchronous networks
 - leader election
 - breadth-first search
 - broadcast and convergecast
 - shortest paths
- Reading: chap 3.6, 4.1-2
- Next: 4.3-4
Last lecture

- Leader election in a synchronous ring
 - LeLann-Chang-Roberts algorithm
 - pass UIDs in one direction, elect max
 - proof: invariants
 - time complexity: n (or $2n$ for halting, unknown size)
 - msg complexity: $O(n^2)$
 - Hirschberg-Sinclair algorithm
 - successive doubling (uses bidirectional channels)
 - msg complexity: $O(n \log n)$
 - time complexity: $O(n)$ (dominated by last phase)
- Non-comparison-based algorithms
 - wait quietly until your “turn”, determined by UID
 - msg complexity: $O(n)$
 - time complexity: $O(u_{\text{min}} n)$, or $O(n 2^{u_{\text{min}}})$ if n unknown
Lower bounds for leader election

• Can we get lower time complexity?
 – easy $n/2$ lower bound (informal)
• Can we get lower message complexity?
 – $\Omega(n \log n)$ message complexity
• Assumptions
 – comparison-based algorithm
 – unique start state (except for UID), deterministic
Comparison-based algorithms

• Depend only on relative order of UIDs
 – identical start state, except for UID
 – manipulate ids only by copying, sending, receiving, and comparing (<, =, and >)
 – can use results of comparisons to decide what to do
 • what (if anything) to send to neighbors
 • whether to elect self leader
 • local state transition
Lower bound proof (overview)

• For any \(n \), there is a ring of size \(n \) such that in that ring, any leader election algorithm has:
 - \(\Omega(n) \) “active” rounds
 - \(\Omega(n/i) \) msgs sent in active round \(i \) (for \(i > \sqrt{n} \))
 - Thus, \(\Omega(n \log n) \) msgs total.

• For \(n = 2^b \), use “bit-reversal ring”

• Generalize for other \(n \): c-symmetric rings

• Key lemma: Processes whose neighborhoods “look the same” act the same (until information from outside their neighborhoods reaches them).
 - need lots of active rounds to break symmetry
Lower bound proof

- a round is **active** if some (non-null) msg is sent
- **k-neighborhood** of a process: the 2k+1 processes within distance k
- \((u_1, u_2, \ldots, u_k) \& (v_1, v_2, \ldots, v_k)\) **order-equivalent** if
 - \(u_i < u_j\) iff \(v_i \leq v_j\) for all \(i, j\)
- two process states \(s\) and \(t\) **correspond** with respect to \((u_1, u_2, \ldots, u_k) \& (v_1, v_2, \ldots, v_k)\) if they are identical except that occurrences of \(u_i\) in \(s\) are replaced by \(v_i\) in \(t\) for all \(i\) (& no other UIDs)
 - analogous defn for corresponding messages
Lower bound proof

- Key lemma: Suppose A is a comparison-based algorithm on a synchronous ring network with processes i and j. If the sequences of UIDs in their k-neighborhoods are order-equivalent then at any point after at most k active rounds, i and j are in corresponding states (with respect to their k-neighborhoods' UID sequences).
- Proof: Induction on $r = \#\text{completed rounds}$.
- Base: $r = 0$.
 - Start states of i and j are identical except for UIDs.
 - They correspond wrt k-nbhd for any $k \geq 0$.

Lower bound proof

• Inductive case:
 – Assume true after round r-1, for all i,j,k.
 – Prove true after round r, for all i,j,k.
 – Fix i,j,k, where i and j have order-equiv k-nbhd.
 – Assume i ≠ j and at most k of first r rounds are active.
 • Trivial otherwise
 – By IH: i and j in corresponding states wrt k-nbhd.
 – Case analysis:
 • If neither i nor j receives non-null msg, make corresponding transition, so end up in corresponding states (wrt k-nbhd).
Lower bound proof

- Either i or j receives non-null msg in round r.
 - round r is active: at most k-1 active of first r-1 rounds
 - (k-1)-nbhds of i-1 and j-1 are order-equivalent
 - By IH: after round r-1, processes i-1 and j-1 in corresponding states wrt their (k-1)-nbhds (and thus wrt k-nbhds of i and j).
 - Thus, msg from i-1 to i and from j-1 to j correspond.
 - Similarly for msgs from i+1 to i and from j+1 to j.
 - So i and j are in corresponding states and receive corresponding messages, so make corresponding transition and end up in corresponding state.
Corollary 1: Suppose A is a comparison-based leader-election algorithm on a synchronous ring network and k is an integer such that for any process i, there is a distinct process j such that i and j have order-equivalent k-neighborhoods. Then A has more than k active rounds.

Proof: By contradiction.

- Suppose A elects i in at most k active rounds.
- By assumption, there is a distinct process j with an order-equivalent k-neighborhood.
- By previous lemma, i and j are in corresponding states, so j is also elected—a contradiction.
Lower bound proof

- Corollary 2: Suppose A is a comparison-based algorithm on a synchronous ring network, and k and m are integers such that the k-neighborhood of any process is order-equivalent to that of at least $m-1$ other processes. Then at least m messages are sent in A's kth active round.

- Proof: By defn, some process sends a message in A's kth active round. By assumption, at least $m-1$ other processes have order-equivalent k-neighborhoods. By the lemma, immediately before this round, all these processes are in corresponding states. Thus, they all send messages in this round, so at least m messages are sent.
Lower bound proof

- We want a ring with many order-equivalent neighborhoods.
- For powers of 2: bit-reversal rings
 - UID is bit-reversed process number
 - for every segment of length n/2^b, there are (at least) 2^b order-equivalent segments (including original)
 - for every process i, at least n/4k processes (including i) with order-equivalent k-neighborhoods for k < n/4.
 - more than n/8 active rounds
 - #msgs ≥ n/4 + n/8 + n/12 + ... + 2 = \Omega(n \log n)
Lower bound proof

- c-symmetric ring: For every l such that $\sqrt{n} < l < n$, and every sequence S of length l in the ring, there are at least $\left\lfloor \frac{cn}{l} \right\rfloor$ order-equivalent occurrences.

- [Frederickson-Lynch] There exists c such that for every positive integer n, there is a c-symmetric ring of size n.

- Given c-symmetric ring, argue similarly to before.
General synchronous networks

- Digraph $G = (V,E)$ and set of messages M
 - $V = $ set of processes
 - $E = $ set of communication channels
 - $\text{distance}(i,j) = $ shortest distance from i to j
 - $\text{diam} = \max \text{distance}(i,j)$ for all i,j
 - assume: strongly connected ($\text{diam} < \infty$), UIDs

- For each process:
 - states
 - start: nonempty subset of states
 - msgs: maps (state,out-nbr) to M_\bot
 - trans: maps (state,in-nbrs$\rightarrow M_\bot$) to states
Leader election in general network

• Simple “flooding” algorithm:
 - Assume diameter is known (diam).
 - Every round: Send max UID seen to all neighbors.
 - Stop after diam rounds.
 - Elect self iff own UID is max seen.
Leader election in general network

- **states**
 - UID
 - max-uid (initially UID)
 - status (one of: unknown, leader, not-leader)
 - round

- **msgs**
 - if round < diam send send max-uid to all neighbors

- **trans**
 - increment round
 - max-uid := max (max-uid, UIDs received)
 - if round = diam then
 - status := leader if max-uid = UID, not-leader otherwise
Leader election in general network

Start configuration
Leader election in general network

Round 1 (msgs)
Leader election in general network

Round 1 (trans)
Leader election in general network

Round 2 (start)
Leader election in general network

Round 2 (msgs)
Leader election in general network

Round 2 (trans)
Leader election in general network

Round 3 (start)
Leader election in general network

Round 3 (msgs)
Leader election in general network
Leader election in general network

Round 4 (start)
Leader election in general network

Round 4 (msgs)
Leader election in general network

Round 4 (trans)
Leader election in general network

- Simple “flooding” algorithm:
 - Assume diameter is known (diam).
 - Every round: Send max UID seen to all neighbors.
 - Stop after diam rounds.
 - Elect self iff own UID is max seen.
 - Time complexity: diam
 - Msg complexity: diam |E|

- Proof?
Leader election in general network

- After round r:
 - if $\text{distance}(j,i) \leq r$ then $\text{max-uid}_i \geq \text{UID}_j$

- Proof (by induction on r):
 - Base: $r = 0$
 - $\text{distance}(j,i) = 0$ implies $j = i$, and $\text{max-uid}_i = \text{UID}_i$
 - Inductive step: assume for $r-1$, prove for r
Leader election in general network

• Do we need to know diameter?
• Can we reduce time complexity?
• Can we reduce message complexity?
Leader election in general network

- Reducing message complexity
 - don't send same UID twice
 - new state var: new-info: Boolean, initially true
 - only send max-uid if new-info = true
 - new-info := (max UID received > max-uid)
Leader election in general network

Start configuration
Leader election in general network

Round 1 (msgs)
Leader election in general network

Round 1 (trans)
Leader election in general network
Leader election in general network

Round 2 (msgs)
Leader election in general network

Round 2 (trans)
Leader election in general network

Round 3 (start)
Leader election in general network

Round 3 (msgs)
Leader election in general network

Round 3 (trans)
Leader election in general network

Round 4 (start)
Leader election in general network

Round 4 (msgs)
Leader election in general network

Round 4 (trans)
Leader election in general network

• Reducing message complexity
 – don't send same UID twice
 – new state var: new-info: Boolean, initially true
 – only send max-uid if new-info = true
 – new-info := (max UID received > max-uid)

• Proof
 – repeat previous proof
 – simulation
Simulation relation

• “Run two algorithms side by side”
• Define *simulation relation* between states
 – satisfied by start states
 – preserved by every transition
 – outputs should be the same in related states
Simulation relation

• All state variables in original are the same in both algorithms
• Base case: by definition
• Inductive step
• Invariant:
 – If i is in-nbr of j and maxuid\textsubscript{i} > maxuid\textsubscript{j} then
 new\textsubscript{i} = true
 – prove by induction
What's with the proofs?
Next week

- Breadth-first search
- Shortest paths
- Spanning trees
Non-comparison-based algorithms

- Can we reduce msg complexity if we aren't constrained to comparison-based algorithms?
- Consider the case where:
 - n is known
 - UIDs are positive integers
- Algorithm:
 - Phase 1, 2, 3,...; n rounds each
 - Phase k exclusively dedicated to UID k
 - Process with UID k sends it on first round of phase k then become leader and halt (elects min)
 - Other processes pass it on, then halt (not leader).
 - Msg complexity: n
 - Time complexity: $u_{\min} \cdot n$
Non-comparison-based algorithms

• What if we don't know n?
• VariableSpeeds algorithm in book
 – UID k moves one hop every 2^k rounds
 – propagate only smallest seen so far
 – msg complexity: $O(n)$
 – time complexity: $O(n \, 2^{u_{\text{min}}})$

• What if we know more?
Leader election in general network