Pleat folding: [Albers @ Bauhaus, 1927-1928]

"Hyperbolic paraboloid" Circular pleat:

Self-folding origami: physics finds equilibrium form automatically
→ complex 3D shape from simple creases

Forces: paper wants to
- stay flat where uncreased
- stay bent where creased

Creasing = plastic deformation beyond yield point, changing elastic memory of paper to nonzero fold angle
Is the "hyperbolic paraboloid" really (approximating) a hyperbolic paraboloid?

Surprise: "hyperbolic paraboloid" doesn't exist! Impossible to nontrivially fold exactly that crease pattern \(\Rightarrow \text{fold angle} \neq 0, \pm 180^\circ \) [Demaine, Demaine, Hart, Price, Tachi 2009/2010]

Good news: (& likely what's happening in RL) possible to fold with extra creases & dropping a central crease:

Proof:
- Fold central \(\square \) hinge by some \(\Theta \)
- Next layer out determined by intersections of 3 known spheres:
- Intersection of 3 spheres can be computed by radical expression
 \((±, ±, ±, \sqrt\) on center coords. & radii
 (though >150,000 terms!)

- in theory, could specify exact 3D model
 by such an expression

- in practice, infeasible beyond second ring

- instead: use interval arithmetic to
 get coordinates within some range \([L, U]\)
- e.g. \([L_1, U_1] + [L_2, U_2] = [L_1+L_2, U_1+U_2]\)
- errors accumulate
- exists provided never take \(\sqrt{L \cdot U}\)
 with \(L < 0\) (then sphere intersection
 might not exist)
- also need to check no collision

- implemented in Mathematica
- checked for \(n=100\) rings
 & \(\Theta \in \{2^\circ, 4^\circ, \ldots, 178^\circ\}\)

- required precision depends on \(n\)
 (2048 decimal digits suffice for \(n=100\)
 - nonalternating triangulation doesn't fold
 to 180° (how much depends on \(n\))
So is it (approx.) a hyperbolic paraboloid?
- YES, very close, except at center
- great parabolic fit from just last 3 rings
- about 0.03% error at center
 (∼ independent of n)

OPEN: does triangulated folding exist for all n & 0 < θ < 180°?
- seems so, but lack tools to show

OPEN: does circular pleat exist?
- conjecture yes
How paper folds between creases:

- require folding to be piecewise-C^2 & flat
- crease = C^1 discontinuity
- semicrease = C^2 discontinuity
- flat = intrinsically flat (AKA “developable”)
 = zero curvature [Gauss’s Theorema Egregium]

Gaussian curvature at a point ($=0$)

= product of two principal curvatures

⇒ one is zero $k_{\min} \& k_{\max}$ curvatures
- if both zero, planar point
- else parabolic point

Lemmas using differential geometry:

- every proper semicrease is a line segment with endpoints on creases or boundary

⇒ no semivertices (except on creases)
- every smooth point lies on a ruled segment with endpoints on creases or boundary, unique unless point has a planar neighborhood

\Rightarrow ruled surface $c(s)+t \cdot S(s)$ around any point

$C^1 \cup C^0$

- torsal: common tangent plane to each rule line
- points along rule line uniformly planar/parabolic

skip
Polyagonal \Rightarrow flat: if uncreased region's boundary folds to a 3D polygon, then entire region folds to a 3D plane.

Proof: claim every point in region is planar
- consider parabolic point p
- a small neighborhood of p
 is entirely parabolic (by smoothness)
- take union of rule lines through those points
- ac & bd polygonal
- look at segment bf of bd
- $n(q)$ = normal at q on bf
 is perpendicular to bf
 & to q's rule line
- torsal \Rightarrow same normal along rule line
 $\Rightarrow n'(q)$ is perpendicular to rule line
 derivative as q moves along bf
- also perp. to bf because all $n(q)$ are
 $n'(q)$ has same direction as $n(q)$
- $n'(q) = 0$
- $n(q)$ constant
- rule lines form planar region

\square
Straight creases stay straight:
geodesic crease with fold angle $\neq \pm 180^\circ$
folds to 3D line segment

Proof: consider point p interior to crease
- surrounded by 2 sides
- compute tangent plane
 on each side: Sp, Tp
- different because fold angle $\neq \pm 180^\circ$
- tangent vector p' along crease
 lies along $Sp \cap Tp$
- consider curvature vector p''
- crease is straight on unfolded paper & paper is locally flat Sp & Tp
\Rightarrow crease should have zero curvature when projected onto Sp or Tp
\Rightarrow p'' is perpendicular to Sp & Tp
- $Sp \neq Tp \Rightarrow p'' = 0$
\Rightarrow crease is a line segment. □

Nontrivial foldings of straight creases are \approx rigid!
every interior face of straight crease pattern
is not touching boundary of paper
has polygonal boundary ($creases \rightarrow segments$)
& thus is planar in 3D i.e. rigid
(boundary faces might not be rigid)
Back to “hyperbolic paraboloids”:

Center is bad: \(\square \cong \square \) rigid
- can fold one crease but not both
 (for nontrivial folding)

Any ring is bad:

\[\Rightarrow \text{induces folding of} \quad \square \quad \text{again} \]

More generally: two rings bad
- if diagonal extensions meet
 - must have local mountain/valley assignments like
 (or reverse)

\[\Rightarrow \text{diagonals in ring are all} \ M \ \text{or all} \ V \]
- induces all-M or all-V folding of
- impossible
OPEN: what is the maximum volume whose surface is a folding of a teabag
doubly covered square

\[\text{e.g., } \square \Rightarrow \star \Rightarrow 4\text{-hypar} \]

Inflation:
- every generic convex polyhedron can be folded to increase volume \[\text{[Bleecker 1996]} \]
 “by simultaneously delivering karate chops to the edges of the polyhedron”

\[\text{\quad valley} \]

- every polyhedron can be folded to increase volume \[\text{[Pak 2006]} \]
\[\Rightarrow \text{limit not polyhedral} \]

Curved creases \[\text{[Huffman 1970s - 1990s]} \]
\[\text{[Demaine, Demaine, Koschitz 2010]} \]
\[+ \text{ Huffman family} \]