Fixed-angle linkages: fix angles between incident bars
- roughly the mechanics of a protein (ignore energy/actuation until next lecture)
- in fact, roughly fixed-angle tree
- protein backbone is roughly fixed-angle chain (usually open but sometimes closed)

[Creighton: PROTEINS, 2nd. ed., p. 5]

- usually focus on backbone, ignoring amino-acid "side chains" ~ reasonable approximation
- basic move: edge spin / local dihedral motion:

Major problems in fixed-angle linkages (esp. chains)
1. Span = max/min distance between endpoints
2. Flattening = motion to flat state
3. Flat-state connectivity = motions between flat states
4. (un)locked = motion between any two states
Span of chain configuration = distance between endpoints
- distribution of span over configuration space heavily studied in e.g. polymer physics [≥20 papers]
- weakly NP-hard to find flat state with min or max span (among flat states) [Soss 2001]
- easy reductions from Partition:
 \[\min: \quad 1 \quad 5 \quad 2 \quad \max: \quad \epsilon \cdot a_i \]

- OPEN: pseudopoly. alg. for flat min/max. span?
- OPEN: complexity of 3D min/max span?

3D max span: structural characterization & poly. time for orthogonal (90°)
 [Benbernou & O'Rourke 2006/2010; Borcea & Streinu 2010]
 - triangulate into body & hinge assembly:
 - geodesic shortest path = max span length
 - each part stays planar & zigzag (this part gets hard for nonorthogonal)
 - twist connections to align path edges
Flattening: weakly NP-hard [Soss & Toussaint 2000]
- reduction from Partition: divide n integers into 2 equal sums
- horizontal bars for integers
- vertical bars in between, length < \frac{1}{n}
- can flip horizontal bars left & right
- build lock that folds in essentially one way:

![Diagram of lock and partition]

very wide \Rightarrow key can't escape on left
\Rightarrow key must align with lock

OPEN: pseudopolynomial-time algorithm?

Flat-state connectivity: [Aloupis et al. 2002 & 2002]
- connected if there's a motion between any two non-self-intersecting flat configurations
- weaker form of connected config. space
- flat states are "canonical" for C
- disconnected otherwise
- stronger notion of locked

- fixed-angle chain might have no flat states (even NP-hard to know which) but proteins do, and seems important
Summary of results:

open chain
- nonacute angles
- equal acute angles
- angles strictly between 60° & 90° & unit edge lengths
- has a monotone state
- angles strictly between 60° & 150° & unit edge lengths
- using 180° edge spins
- orthogonal & using 180° edge spins

[Aloupis et al. 2002 & 2002]

set of open chains, pinned at one end
- orthogonal
- orthogonal & partially rigid

[Aloupis & Meijer 2006]

closed chain
- nonacute
- orthogonal
- orthogonal & unit edge lengths

[OPEN]

tree
- orthogonal
- orthogonal & partially rigid

[OPEN]

graph - orthogonal

[OPEN]

connected
connected
connected
connected
connected
disconnected
connected
connected
connected
disconnected
disconnected

some edges can't spin
Flat-state disconnected partially rigid tree:

- inner edges flexible; rest rigid
- pins to remove reflectional symmetry

Variations:
1. four pinned chains, partially rigid
2. orthogonal graph
Flat-state disconnected partially rigid tree: (cont'd)

Claim: these two flat states are disconnected

Proof:
- View plane abcd as stationary
- Four branches & two sides of plane
 \[\Rightarrow \geq 2\] branches must flip through same side
- Opposite branches (ac or bd) can't share:
 - Geometric argument
 - Links parallel to axis of rotation hit exactly
 - Can shrink a & b edges for proper collision
- Adjacent branches (say, ab) can't share:
 - Topological argument
 - Connect shallow rope \(a \to \text{end of a branch}\)
 - Connect deeper rope \(b \to \text{end of b branch}\)
 - Unlinked in left config.
 - Linked in right config

- Ropes stay as-is during motion above plane
 \[\Rightarrow a \& b\] branches intersect

Open: flexible tree? orthogonal tree?
Orthogonal open chains are flat-state connected:
- canonical form: staircase (trans config. from L 16)
 (alternate ±90° turns)

- lift a flat state into canonical form:
 0) induction hypothesis:
 - half of chain remains in plane
 - half of chain in canonical form in perp. plane
 1) rotate canonical half (and its containing plane) so that next edge makes a larger staircase
 2) rotate larger staircase (around following edge) to lift into staircase plane
 3) repeat
 - FedEx via canonical form

Nonacute open chains: similar
- canonical state = z-monotone (⇒ never hit z=0)

Equal acute chains: similar
- canonical state = zig-zag (⇒ lifting harder)

OPEN: general chains?
Locked proteins:
- locked universal-joint chains are locked fixed-angle too
- even simpler, 4-link “crossed-legs”:
 [Langerman 2002]
- existence of locked chains suggests config. space is hard to navigate ~ yet nature does it well
- Conjecture: additional constraints in nature prevent existence of locked chains
 - bond lengths all roughly equal (1-1.53Å)
 - bond angles all obtuse & roughly equal (115.6-123.2°)
- OPEN: is there a locked fixed-angle chain that’s equilateral, equiangular, & obtuse
 - crossed legs satisfies all but obtuse
 - subdivided knitting needles all but equi-ang.
- proteins also produced sequentially by ribosome:
Producible protein (fixed-angle) chains:

Ribosome = “machine” built from proteins & RNA translating messenger RNA into proteins

“creation”

\[\text{narrow tunnel} \sim \text{protein} \sim \text{straight} \sim \text{conjectured amino acid attaches} \]

\(\beta \)-producible chain = simple geometric model of chains & configurations resulting from ribosome
- cone \(C_\beta \) of half-angle \(\beta \)
- chain produced in cone, link by link
- latest link passes through cone apex
- when latest vertex \(v_i \) reaches cone apex, next link \((v_i, v_{i+1}) \) is instantly created in cone & \(v_i \) can never re-enter cone

Reality: \(\beta = 90^\circ \) (halfspace) is the closest model (somewhat local model though ~ really long protein might reach around ribosome)

\((\leq \alpha) \)-chain = chain of max. turn angle \(\leq \alpha \)
- \(\beta \)-producible \(\Rightarrow \alpha/2 \leq \beta \leq 180^\circ - \alpha/2 \)
- we'll assume \(\alpha = \beta \)
Canonical configuration for \((\leq \alpha)\)-chains:
- put \(v_0\) at origin \((0,0,0)\)
- put \(v_{i+1}\) on cone \(C_{\alpha/2}\) centered at \(v_i\)
- \(v_1\) chosen to maximize \(\alpha\) coordinate
- \(v_{i+1}\) chosen to get correct turn angle at \(v_i\):
 - view on sphere centered at \(v_i\) & radius \(\alpha/2\)
 - \(C_{\alpha/2}\) intersects along circle around north pole
 - turn-angle cone intersects along tilted circle of radius \(\tau_i\)
- intersections overlap (at 1 or 2 pts.) because center of turn-angle circle is on \(C_{\alpha/2}\) circle & \(\tau_i \leq \alpha\)
- take counterclockwise-most intersection for \(v_{i+1}\) relative to origin
- kind of spiral
- similar to nature's \(\alpha\)-helix
- contained in \(C_{\alpha/2}\) cone: by induction
- in fact, strictly inside cone \(C_{\alpha/2}\) except for first link because \((v_0,v_1)\) & \((v_1,v_2)\) not parallel
Canonicalizing \((\geq \alpha)\)-producible \((\leq \alpha)\)-chains:

- **Main idea:** Play production movie backwards
 \(\Rightarrow\) as links enter the cone, they disappear
- maintain these links in canonical configuration,
 translated to start at last existing vertex \(v_i\) &
 rotated to make cone as vertical as possible
 while satisfying turn angle at \(v_i\)
- viewed on sphere centered at \(v_i\):
 put canonical cone axis
 \(2\tau_i\) up from previous edge direction
 toward north pole (maxing out at north pole)
 \(\Rightarrow\) canonical configuration is in \(C\beta(2\alpha)\)
 because \((v_{i-1}, v_i)\) is too (by production)
- if \((v_{i-1}, v_i)\) is vertical, then
 orientation of first link is not determined
- choices for smaller & larger times may differ
- freeze movie & continuously spin \((v_{i-1}, v_i)\)
 to switch from previous choice to next
- when \(v_i\) reaches cone apex, need to extend
 canonical configuration & maintain invariant
- spin \((v_{i-1}, v_i)\) to make \((v_i, v_{i+1})\) as vertical
 as possible \(\Rightarrow\) new canon. config. rotation
- spin \((v_i, v_{i+1})\) to bring \((v_i, v_{i+1})\) into
 canonical configuration
- note: already canonical \(\Rightarrow\) rigid\(\square\)
What is producible?

- α-canonical configuration is β-producible for $\alpha/2 \leq \beta \leq 180^\circ - \alpha/2$ (full range)
- keep canonical configuration in complementary cone B_β
- produces “rigidly” (no spinning required)

- $(\leq \alpha)$-chain $(\geq \alpha)$-producible
 \Rightarrow β-producible for $\alpha/2 \leq \beta \leq 180^\circ - \alpha/2$
- β-produce α-canonical configuration
- reverse canonicalization procedure far away from production cone C_β
- flat states of $(\leq \alpha)$-chains are β-producible for $\alpha \leq \beta \leq 90^\circ$

- imagine moving cone instead of chain
- create next link in vertical plane
- slide up to plane of flat configuration with cone just touching plane
- repeat

\Rightarrow flat-state connected
- canonicalize both, combine motions
\Rightarrow for $(\leq \alpha)$-chains & $\alpha \leq \beta \leq 90^\circ$,
configuration is flattenable \Rightarrow it is β-producible