Manipulation: Mechanisms, Grasping and Inverse Kinematics

RSS Lectures 14 & 15
Monday / Wednesday, 31 March / 2 April 2014
Prof. Seth Teller

MIT HKN is hosting another study break TODAY with cupcakes from Georgetown Cupcakes! 3pm until we run out at the Chu Lounge (38-201).

Force-Direction Closure

- Under what conditions will a set of point contact forces resist arbitrary planar translation?

... What's going on?
How many contacts are needed?

• Analyze situation in c-space with DOF argument
 – First: how many c-space DOFs for object origin?

Contact A

How many contacts are needed?

• Analyze situation in c-space with DOF argument
 – What does a Cartesian point contact imply in c-space?
How many contacts are needed?

- Analyze situation in c-space with DOF argument
 - What does a Cartesian point contact imply in c-space?
DOF Counting for Translation

- Conclude that **3 contacts are needed in general**
 - Are there situations in which more are required?

 - Example of degeneracy / degenerate conditions

 Cartesian space

 Configuration space

Conditions for Force-Direction Closure

- **Force vectors must**
- **Some positive combination of forces**

 Algebraic condition?
 For force vectors p, q, r, there must exist $\alpha, \beta, \gamma > 0$ s.t.
Synthesizing a Force-Direction Grasp

1. Choose contact edges admitting a force center
2. Project force center onto per-edge contact points
3. Scale force magnitudes to produce zero net force

Bottom line: given a polygonal shape, compute a (pinning, frictionless) three-fingered grasp

Torque Closure

- Under what conditions will a set of point contact forces resist arbitrary planar rotations?

... What’s going on?
How many contacts to “pin” rotation?

- Use analogous DOF argument in c-space
 - First: how many c-space DOFs for object pose?

How many contacts to pin rotation?

- Introduce point contact in Cartesian space
 - Implies c-space constraint with 2D manifold boundary

Cartesian space

Configuration space
How many contacts to pin rotation?

• Introduce point contact in Cartesian space
 – Implies c-space constraint with 2D manifold boundary

• Locally, each constraint has a planar boundary
 – ... So, how many halfspaces needed to pin point?
Are There Degeneracies?

- Polygon with sides not in general position…
- Might we need more? What about circles?
- For polyhedra in 3D: need 7 contacts (6 DOF + 1)
 - Frictionless contacts cannot pin

Conditions for Torque Closure

- Each normal cone must contain the other’s apex
- Pairwise effective forces must cancel each other

Algebraic condition? For force vectors f_1, f_2, f_3, f_4, there must exist α, β, γ, $\delta > 0$ s.t.

(Notation as in Nguyen 1986)
Synthesizing a Torque-Closure Grasp

1. Choose two edge pairs* admitting force centers
2. Choose centers inducing mutual normal cones
3. Project centers to respective edge contact points
4. Scale forces to produce alignment, cancellation

*Edge pairs need not be contiguous

Does rotation closure imply translation closure?

Kinetic and Static Friction (“Stiction”)

\[F_f \leq \mu_s \cdot F_n \text{ (at rest): coefficient of static friction } \mu_s \]
\[F_f \leq \mu_k \cdot F_n \text{ (moving): coefficient of kinetic friction } \mu_k \]

(Stiction makes things difficult both for humans and robots. Why?)
Point Contact with Friction

• Consider a point contact exerting force F at an angle θ to the surface normal. What happens?

For contact at rest,

$$|F| < |F_t| = \mu |F_n|$$

At critical angle θ_{crit},

$$|F| =$$

Substituting gives

$$|F| \sin \theta_{\text{crit}} =$$

Which yields

$$\mu =$$

So that

$$\theta_{\text{crit}} =$$

• Produces a cone of directions, s.t. point will not slide when F is applied.

Grasp Analysis With Friction

Consider forces f_1, f_2 at frictional contacts p_1, p_2

When can f_1, f_2 oppose one another without sliding?

Each force must

Point p_1 (resp. p_2) must
Grasp Synthesis With Friction

Choose a compatible pair of edges e_1, e_2

Intuition? Using what data? How to choose?

Grasp Synthesis With Friction

Choose target region for contact point p_1
Determine feasible target region for contact p_2
Orient and scale f_1, f_2 so as to cancel along p_1p_2
Forward and Inverse Kinematics

- So far, have cast computations in Cartesian space
- But manipulators controlled in configuration space:
 - Rigid links constrained by joints
 - For now, focus on joint values
- Example 3-link mechanism:
 - Joint coordinates $\theta_1, \theta_2, \theta_3$
 - Link lengths L_1, L_2, L_3
- End effector coordinates
 - “Reference pose” described by $x, y,$ and ϕ (w.r.t. vertical)
- How can we relate EE to configuration variables?

Forward Kinematics

- Given mechanism description and joint values, express end effector pose in Cartesian coordinates
 - Example: two-link arm with one sliding, one rotating joint
- Configuration variables:
 - Joint coordinates d, θ
 - Link lengths (both 1)
- End effector coordinates
 - “Reference point” (x, y)
- Challenge: express as
 \[
 x = x(d, \theta) = \ldots
 \]
 \[
 y = y(d, \theta) = \ldots
 \]
Inverse Kinematics

• Given end effector pose in Cartesian coordinates, identify the joint values that yield the desired pose

• Challenge: solve for joint values in terms of pose

\[\theta = \theta (x, y) \]
\[d = d (x, y) \]

Hints:

\[x = 1 + \cos \theta \]
\[y = d + \sin \theta \]
\[\cos^2 \theta = (x-1)^2 \]
\[\sin^2 \theta = (y-d)^2 \]

1 = (x-1)^2 + (y-d)^2

Why is IK difficult?

• Nonlinear
 – Revolute joints \(\rightarrow \) inverse trigonometry

• Multi-valued
 – Often multiple solutions for a single Cartesian pose

• Discontinuities and singularities
 – Can lose one or more DOFs in some configurations

• Possibly over-constrained (no exact solution)
 – Use of approximation and iterative algorithms

• Dynamics
 – In reality, want to apply forces and torques (while respecting physical constraints), not just move arm!
Putting it All Together: Grasping

- Input workspace, obstacles, and manipuland:
 - Determine a feasible grasp (set of contact points)
 - Use IK to solve for target end-effector pose in c-space
 - Plan a collision-free reach to the computed pose
 - Control end-effector along desired trajectory

What have we swept under the rug?

- Sensing
 - Shape, pose of target object, accessibility of surfaces
 - Classification of material type from sensor data
 - Freespace through which grasping action will occur

- Material properties
 - Estimation of object’s mass, moments, friction coefficients
 - Internal, articulated, passive vs. active degrees of freedom

- Uncertainty & compliance
 - Tolerate noise inherent in sensing and actuation
 - Ensure that slight sensing, actuation errors won’t cause damage
 - Handle soft fingers making contact over a finite (not zero) area

- Dynamics
 - All of the above factors may be changing in real time