RSS I: Recap, and What’s Next?

RSS Lecture 21
Wednesday 14 May 2014
Prof. Teller

Key Questions

• What were we trying to do in RSS?
• What we covered this term:
 – In Lecture
 – In Forum
 – In Lab
• Where might you go from here?
 – Other robotics-related activities at MIT and beyond
RSS I: Teaching Objectives

• Intensive introduction to mobile robotics
 – Focus on autonomous mobility & manipulation
 – End-to-end, systems perspective on robotics
 – Exposure to fundamental robotics algorithms
 – Mens et manus: lecture and lab
 • Hands on literally every aspect of a mobile robot
 • Generalists! With depth in some area of interest
 – Course challenge: 4-7 week scope
 • Authentic, intense team-based design experience
 • Flexibility to choose your technical focus, roles

• Communication
 – Briefings, engineering documents, schedules
 – Team techniques, coordination and dynamics
 – Debates: adopting policy and ethical perspectives

Robot Architectural Layers

• Actuators and sensors
 – DC motor, shaft encoder

• Controller board architecture
 – Power, data, low-level control

• Host-based signal-level control
 – PWM to controller; closed-loop feedback

• ... All of this was managed by you
 – Code to sample and filter sensor values, integrate odometry, control motors etc.
More abstraction layers: ROS

- One of several available robot “O/S’s”
 - Publish/subscribe message abstraction
 - Message-based event handling
 - Odometry and sensor time-stamping
 - Open-source, packages, extensibility

- Alternatives:
 - USC Player/Stage
 - Microsoft RDS
 - CMU Carmen
 - MIT LCM (somewhat lower-level)
 - ...

Higher-level Capabilities

- Object detection & visual servoing
 - Rudimentary computer vision, motion control

- Wall-following / local mapping
 - Filtering and estimation from noisy sonar data

- Global path planning and execution
 - Provided map, cast planning as search

- Manipulation
 - Inverse kinematics of a 3-DOF manipulator
 - Position-controlled servos, integration w/ vision

- Mobile manipulation
 - Coordinated motion, manipulation for building
Things We Didn’t Get To

- Practical localization and SLAM
 - Fused odometry, bump, sonar, vision, ...

- State estimation
 - Inference under uncertainty (e.g. Kalman filter), ...

- High-level machine vision
 - E.g. features, structure from motion, object recognition, ...

- Human-robot interaction
 - Speech, gesture, shared mental models, ...

- High-level planning
 - Action selection, unstructured environments, ...

- Distributed operation
 - Communicating & coordinating bots, swarms, ...
 - Human-robot teaming

Whole Areas We Didn’t Get To

- Factory automation
- Walking, flying, swimming, climbing robots
- Biologically-inspired robots
- Medical robotics & haptics
- Mobile manipulation robots
- Space robotics
- Learning robots
- Assistive robots & exoskeletons
- Field and service robots
- Evolutionary robotics
- Neurorobotics
Where might you go from here?

- **EECS subjects**
 - Machine vision, Underactuated robotics, Assistive technology, Machine learning, Inference and information, ...

- **Aero/Astro subjects**
 - Real-time systems and software, Cognitive robotics, ...

- **MechE subjects**
 - Robotics, Design of electromechanical robotic systems, Probabilistic methods for robotics, Hands-on marine robotics, ...

- **Media Lab subjects**
 - Human-robot interaction, Human 2.0

- **IAP competitions**
 - 6.270, MASlab

- **UROPs, LA’ing, 6.UAP, MEng, etc.**

Robotics Research at MIT

- **Research (UROP, UAP, MEng, SM, PhD)**
 - RRG (Nick Roy)
 - RLG (Tedrake)
 - RVSN (Teller)
 - DRG (Rus)
 - CMG (Deb Roy)
 - SMG (Breazeal)
 - IRG (Shah)
 - ARES (Frazzoli)
 - MERS (Williams)
 - SKL (Karaman)
 - LIST (Asada)
 - BRL (Kim)
 - NSL (Slotine)
 - Biomechatronics (Herr)
 - LISG (TLP, LPK)
 - COE (Leonard)
 - ACL (How)
 - HRG (Hover)
 - TBD (Rodriguez)
Robotics research post-MIT

- **Academic labs**
 - Berkeley, Stanford, U. Washington, CMU Robotics Institute, Penn GRASP Lab, Georgia Tech, Caltech, Brown, Virginia Tech, IHMC (Florida Inst. for Human and Machine Cognition), ...

- **Industrial labs**
 - Honda, Toyota, Microsoft, Google, ...

- **Government labs**
 - NASA JPL, NASA Johnson, NRL, ARL, ONR, NIST, ARDEC, Dept. of Energy, Sandia, ...

Industry (small sample)

- FANUC, ABB, Honeywell, Siemens, GE, ...
- iRobot, Kinetiq, ...
- Adept, Kiva Robotics*, ...
- Aldebaran, ...
- Rethink, Boston Dynamics*, Meka*, ...
- Intuitive (DaVinci), Titan, ...
- Rewalk, Indego (exoskeletons), ...
- John Deere, Harvest Automation, ...
- Ford, Honda, Toyota, ...
- OSRF (non-profit)
- Google
Summarizing...

- Tried to give you a *taste* of robotics:
 - In all its interdisciplinary richness: geometry, inference, estimation, optimization, physics, mechanical engineering, electrical engineering, computer science, cognitive science, ...

- ... and as an *engineering* endeavor
 - Systems thinking
 - Engineering tools and methods
 - Managing constraints, complexity
 - Spiral dev’t, deadlines and milestones
 - Team dynamics

At the end of the day (term!)

- RSS is a real engineering experience
 - Structured component (lectures, labs)
 - Less-structured component (challenge)

- With deliverables, communications
 - Briefings, proposal drafts/revisions, debate

- Regardless of where you are headed
 - We hope that the tools and techniques we practiced in RSS will serve you well

- Best of luck in all that you do next!
Lastly

• Reflection
 – Please email it to us by midnight Thursday

• Online subject evaluations!
 – Please do them