Electric Motors

6.141 / RSS Lecture 3
Wednesday, 12 Feb 2014
Prof. Seth Teller

Today

• DC (permanent magnet) motors
 – Basic principles
 – Characterization
 – Sensing rotation with encoders
 – Choosing one that’s adequate (“sizing”)
 – Gears
 – Electronic support for control
• Servo Motors
• Stepper Motors - time permitting
Basic Principles

- **Orsted (1819):** DC current produces a magnetic field.
- **Faraday motor (1821):**
 - Magnet; bowl of mercury; stiff wire attached at top.
 - Run DC current through wire; it rotates about magnet.
- **Effect came to be known as “Lorentz force”:**
 - Induced force perpendicular to current direction, B field.

DC motor (based upon Lorentz force):

- **Wind wire coil around armature** to strengthen B field.
- **Mount armature on rotor; attach rotor to drive shaft.**
- **Enclose rotor and drive shaft within stator:**
 - Permanent magnet or electromagnet.
- **Supply DC voltage and current** as shown below.
Completing a rotation

- Reverse current direction
- Commutator (copper) and brushes (not shown)
- Blue coil is the one in contact with + terminal

Motor Power, Torque, and Efficiency

\[P_e : \text{Supplied Electrical Power, in watts [J/s]} \]
\[P_e = \]

\[P_m : \text{Output Mechanical Power} \]
\[P_m = \]

\[T = \] is the torque; it is the tangential force \(F \) delivered at a distance \(r \) from shaft center [N m]

\[\omega : \]

Efficiency \(e = ? \)
Back-EMF

• When a conductor moves within a static magnetic field:
 – Current is produced in conductor
 – Current is called “back-EMF”
 – Back-EMF is proportional to shaft angular velocity, and opposes current supplied by PS
 – Thus as shaft (armature) angular velocity increases, rotation-induced current increases
 – Thus supplied current from PS decreases
 – Thus as ω increases, torque decreases!

Pittman GM9236S025 DC Motor (12VDC)

“Speed-Torque Characteristic at 12VDC”

What does this plot mean?

How can we interpret it?
Load vs. RPM, Power, and Torque

- **Increase load** on the shaft
 - RPM drops (direction on plot?)
 - Rotation-induced voltage across armature (opposing PS) decreases
 - Thus (since $V=IR$) more current will flow from the power supply
 - Thus more torque will be produced

- **Decrease load** on the shaft
 - RPM increases (direction on plot?)
 - Rotation-induced voltage across armature (opposing PS) increases
 - Thus (since $V=IR$) less current will flow from the power supply
 - Thus less torque will be produced

- What happens under **no load**?

Pittman GM9236S025 DC Motor

“Power-Torque Characteristic”

What info is in this plot?
Motor operating regimes

- **Continuous torque (480 oz. in. for Pittman motor)**
 -...
- **Peak torque (2585 oz. in. for Pittman motor)**
 - Momentary, intermittent or acceleration torque
 - Torque maximized at

Example motor datasheet (detail)

GM9236S025

Lo-Cog® DC Servo Gearmotor

<table>
<thead>
<tr>
<th>Assembly Data</th>
<th>Symbol</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-Load Speed</td>
<td>ω_{n}</td>
<td>rpm</td>
<td>71 (7.1)</td>
</tr>
<tr>
<td>Continuous Torque</td>
<td>T_{c}</td>
<td>oz.in. (Nm)</td>
<td>480</td>
</tr>
<tr>
<td>Peak Torque (Stall)</td>
<td>T_{pm}</td>
<td>oz.in. (Nm)</td>
<td>2500</td>
</tr>
<tr>
<td>Weight</td>
<td>W_{m}</td>
<td>oz. (g)</td>
<td>25.7</td>
</tr>
</tbody>
</table>

Motor Data

Torque Constant	K_{e}	Nm/rad (N.m/°)	2.75	(2.05E-02)
Back EMF Constant	K_{f}	V/rpm (V/min)	2.40	(2.05E-02)
Resistance	R_{e}	Ω	0.71	
Inductance	L	H	0.05	
No Load Current	I_{o}	A	0.23	
Peak Current (Stall)	I_{pm}	A	16.9	
Motor Constant	K_{m}	oz.in./A (Nm/A)	1.11	(2.00E-02)
Friction Torque	T_{f}	oz.in. (Nm)	0.09	(5.5E-03)
Motor Inertia	J_{m}	oz.in/s² (kg.m²)	1.0E-03	(7.1E-06)
Electrical Time Constant	τ_{e}	ms	1.05	
Mechanical Time Constant	τ_{m}	ms	8.5	
Viscous Damping	b	oz.in/degree (Nm.s)	0.053	(5.6E-06)
Damping Constant	K_{d}	oz.in/degree (Nm.s)	12.6	(8.6E-04)
Maximum Operating Temperature	T_{max}	°F (°C)	211	(110)
Thermal Impedance	R_{t}	°F/°C	64.3	(18.9)
Thermal Time Constant	τ_{t}	min	51.5	

Creation Data

Production Ratio			
Efficiency	65.5		
Efficiency	0.80		
Maximum Allowable Torque	oz.in. (Nm)	540	(3.7E-01)

Gearing Down

- Gearbox:
 - Transmits power mechanically
 - Transforms shaft angular velocity ω and torque T (how?)

- Gear ratio
 $R = \frac{\text{# teeth}_{\text{out}}}{\text{# teeth}_{\text{in}}}$

 $\omega_{\text{out}} = \frac{\omega_{\text{in}}}{R}$

 $T_{\text{out}} = e \cdot (T_{\text{in}} \cdot R)$

 e is the gearbox efficiency, $0 < e < 1$

 What is $1-e$ portion?
 - Heat (friction, deformation), sound

Motor Sizing Example

- Robot's task: climb ramp of inclination $\theta = \pi/6$ at constant velocity $v = 1 \text{ in/sec}$

- How much torque must each wheel motor deliver? (Current, power needed?)

- What else do you need to know?

 $F_t = w \sin \theta$ (tangential component)

 Equate power terms:
 $F_t v = 2T \omega \theta v$

 Since $v = \omega r$

 Then $F_t \omega r = 2T \omega$

 So that
 $T = \frac{F_t r}{2}$

 $\omega = \frac{w \sin \theta}{0.5(2.5 \text{ in})} = \frac{25 \text{ lb.} \times 0.5 \times 2.5 \text{ in}}{2} = 15.625 \text{ lb.-in.} = 250 \text{ oz.-in.}$

 Current (from datasheet) = ~2 A

 Power = $I \times V = 2 \text{A} \times 12 \text{V} = \approx 25 \text{ W}$
Microprocessor Control of DC Motor

- So far, we’ve seen only constant +12V DC
- In practice, we control motor direction and speed by modulating sign and time average of voltage
- Motor direction
- Motor speed

Controlling Motor Direction

- This circuit is called an H-Bridge.
 - In uORC, it’s an L6205 DUAL FULL BRIDGE DRIVER
 - Motor direction determined by corner-paired switch that determines direction of potential and thus current flow
H-Bridge Circuit States

• Open
 – No voltage applied across motor M

• Forward
 – V_{in} applied left to right across M

• Reverse
 – V_{in} applied right to left across M

PWM: Pulse Width Modulation

• Apply motor voltage as a square wave at fixed frequency (from 60Hz to 50KHz; Orc uses ~16KHz)

• Control motor speed/power by changing the duty cycle (or pulse width) of voltage signal
 – At 0% duty cycle, motor is off
 – At 100%, full power
 – At 50%, half power etc.

• Effectively produces a time-averaged voltage signal

• Inductive load of motor smothes input signal in coils

• Duty cycle: Laptop sends 8-bit value (0..255) to μORC PSOC

Wikipedia

Clark and Owings
Sensing: Motor Shaft Encoders

- Report motor shaft speed (easy) or position (harder)
- Codewheel: Circular disk with alternating black and white regions, mounted on motor shaft
 - Optical sensor detects codewheel region transitions
 - Counting the pulses produced in any time interval yields change in shaft angle (how to compute distance traveled?)
 - This is basic odometry used for control & “dead reckoning,” or estimation of pose relative to some starting point

Servomechanisms (servo motors, servos)

- DC motor in an integrated package with 3 extra elements:
 - Gearbox between motor shaft and output shaft
 - Provides low-speed, high-torque output
 - Feedback-based position control circuit (pulse-width control)
 - Drives servo to commanded “position” (shaft angle)
 - Shaft angle sensing (potentiometer)
 - Current sense for torque sensing
 - Limit stops on output shaft
 - Provide mechanical limits on servo’s minimum & maximum “position”
Stepper Motor (Example: 90-degree bipolar)

Stator: even N coils arrayed around rotor symmetry axis (out of plane of page)

- Controller does commutation:
 Energizes coils in rotational sequence; rotor swings into alignment to successive states
- When the coil is kept energized, motor produces “holding torque”

Rotor: permanent magnet(s) mounted on output drive shaft

- Adv: holding torque, speed and position control without using encoders or feedback
- Angular resolutions of < 1deg are available!
- Brushless!

Comparison of Motor Types

<table>
<thead>
<tr>
<th>Type:</th>
<th>Pluses:</th>
<th>Minuses:</th>
<th>Best For:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Motor</td>
<td>Common</td>
<td>Too fast (needs gearbox) High current (usually) Expensive PWM is complex</td>
<td>Large robots</td>
</tr>
<tr>
<td></td>
<td>Wide variety of sizes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Most powerful</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Easy to interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Must for large robots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hobby Servo</td>
<td>All in one package</td>
<td>Low weight capability</td>
<td>Small, legged robots</td>
</tr>
<tr>
<td></td>
<td>Variety; cheap; easy to mount and interface</td>
<td>Little speed control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medium power required</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stepper Motor</td>
<td>Precise speed control</td>
<td>Heavy for output power</td>
<td>Line followers, maze solvers</td>
</tr>
<tr>
<td></td>
<td>Great variety</td>
<td>High current</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Good indoor robot speed</td>
<td>Bulky / harder to mount</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cheap, easy to interface</td>
<td>Low weight capability, low power</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Complex to control</td>
<td></td>
</tr>
</tbody>
</table>

Clark and Owings, p. 29
Supplementary Reading

• Theoretical
 – Foundations of Electric Power, J.R. Cogdell
 – Electric Motors and their Controls: An Introduction, Tak Kenjo
• Practical
 – Building Robot Drive Trains, D. Clark and M. Owings
 – Mobile Robots: Inspiration to Implementation, J.L. Jones, B. Seiger, A.M. Flynn

Recap and What’s Next

Today:
• Some practical aspects of DC motors
 – Operation, sizing, applications
In Lab:
• Continued work on Lab 2
Forum (this Friday):
• Expectations for briefings, collaboration
Next Lecture (Tuesday at 1pm – virtual Monday):
• Cameras and low-level vision