Problem 1: True or False?

1. If \(L_1 \) and \(L_2 \) are regular, then \(L_1 \cup L_2 \) is regular. \textbf{True}

2. If \(L_1 \) and \(L_2 \) are non-regular, then \(L_1 \cap L_2 \) is non-regular.
 \textbf{False}. Consider \(L_1 = \{0^n1^n : n \geq 0\} \) and \(L_2 = \{0^n1^n1^n : n \geq 0\} \).

3. If \(L_1 \) is regular and \(L_2 \) is non-regular, then \(L_1 \cup L_2 \) is non-regular.
 \textbf{False}. Consider \(L_1 = \Sigma^* \) and \(L_2 \) any non-regular language.

4. If \(L_1 \) is regular, \(L_2 \) is non-regular, and \(L_1 \cap L_2 \) is regular, than \(L_1 \cup L_2 \) is non-regular.
 \textbf{True}. Write \(L_2 = \{(L_1 \cup L_2) - L_1\} \cup (L_1 \cap L_2) \).

5. The following language is regular: The set of strings in \(\{0, 1\}^* \) having the property that the number of 0’s and the number of 1’s differ by no more than 2.
 \textbf{False}.

6. The following language is regular: The set of strings in \(\{0, 1\}^* \) having the property that in every prefix, the number of 0’s and the number of 1’s differ by no more than 2.
 \textbf{True}. A simple 5-state DFA accepts this language.

Problem 2: Regular Expressions. Write regular expressions for the following languages. The alphabet is \(\{0, 1\}^* \).

1. \(A_1 = \{ w | w \text{ contains at least two 0's}\} \).
 \textbf{Solution}: \((0 \cup 1)^*0(0 \cup 1)^*0(0 \cup 1)^* \).

2. \(A_2 = \{ w | w \text{ contains an even number of 0's}\} \).
 \textbf{Solution}: \(1^*(01^*1)^* \).

Problem 3: Proving non-regularity: the Pumping Lemma. Prove that the following languages are not regular.

1. \(L_4 = \{ i^j2^k | i, j, k \geq 0 \text{ and if } i = 1 \text{ then } j = k \} \).
 \textbf{Solution}: Define \(L_4' = \{ i^j2^{k'} | j, k \geq 0 \} \cup \{ 0^i1^j2^k | i > 1, j, k \geq 0 \} \). It is easily seen that \(L_4' \) is regular. Now, observe that \(L_4 - L_4' = \{ 0^i1^j2^k | j \geq 0 \} \) is not regular.

Problem 4: The size of the minimal DFA for a regular language \(L \). Consider the regular language \(L = \{ w | w \text{ contains at least three 1's}\} \). Prove that any DFA for this language has at least 4 states.

\textbf{Solution}: The crucial fact to use is that, if strings \(x \) and \(y \) lead from the start state to the same state \(q \), then for every string \(z \), \(xz \in L \) if and only if \(yz \in L \). More formally, \(\delta^*(q_0, x) = \delta^*(q_0, y) \) implies \(\forall z \in \Sigma^*, xz \in L \) if and only if \(yz \in L \). (Think about it and convince yourself that this is true).

Now, note that strings \(\epsilon, 111, 111 \) must lead to different states. For instance, suppose \(\delta(q_0, \epsilon) = \delta(q_0, 1) \). Then, setting \(z = 11 \), we see that 11 \(\not\in L \) whereas 111 \(\in L \). This is a contradiction, and therefore the strings \(\epsilon \) and 1 lead to different states.