Readings: Sections 7.1, 7.2, 7.3

Problem 1: Answer each of the following with TRUE or FALSE. You do not need to justify your answers. (Note: when dealing with sets like $O(f(n))$, $\Omega(f(n))$, etc., we use the symbols = and \in interchangeably.)

1. $3 = O(n)$
2. $12n = O(n)$
3. $n^4 = O(n^3 \log^3(n))$
4. $3n \log(n) + 1000n = O(n^2)$
5. $3^n = O(2^n)$
6. $3^n = 2^{O(n)}$
7. $2^{2^n} = O(2^{2^n})$
8. $n^n = O(n!)$
9. $n = o(3n)$
10. $1000n = o(n^3)$
11. $3^n = o(4^n)$
12. $1000 = o(n)$
13. $n = o(\log^2(n))$
14. $\frac{1}{n} = o(1)$
15. $\log_2(n) = \Theta(\log_{10}(n))$
16. $3^n = \Theta(4^n)$
17. $n^3 = \Theta(g^{\log n})$
18. $n^2 = \Omega(n^3)$
19. $\log(n) = \Omega(\log(\log(n)))$
20. $4^n = \Omega(2^{\pi^2})$

Problem 2: (Sipser problem 7.12)
Let

$$MODEXP = \{ \langle a, b, c, p \rangle \mid a, b, c \text{ and } p \text{ are binary integers such that } a^b \equiv c \pmod{p} \}.$$

Show that $MODEXP$ is in P. (Note that the first and the most obvious algorithm you would come up with would run in time exponential in the input length. Hint: Try it first when b is a power of 2.)

Problem 3: (Based on Sipser problem 7.14) Prove that P is closed under:

1. The concatenation operation.
2. The star operation.

Problem 4: Prove that NP is closed under:

1. The intersection operation.
2. The concatenation operation.

Problem 5: Prove that the following languages are in NP. You may use either the guess-and-check (certificate/verifier) method, or else describe a nondeterministic Turing machine that decides the language in time polynomial in the length of the input.
1. (From Sipser exercise 7.11)

ISO = \{ (G, H) | G and H are undirected graphs and G and H are isomorphic \}

(Two graphs are isomorphic if, by renaming the nodes of one, we get a graph that is identical to the other.)

2. TRIPLE-SAT = \{ (\phi) | \phi is a Boolean formula and \phi has at least three distinct satisfying assignments \}

(Boolean formulas are defined on p. 271 of Sipser’s book.)

3. A crossword puzzle construction problem is specified by a finite set \(W \subseteq \Sigma^* \) of words, and an \(n \times n \) matrix \(A \) whose entries are either 0 or 1 (intuitively, a 0 corresponds to a blank square, and a 1 corresponds to a black square). The goal is to use the words in \(W \) to fill in the blank squares. Formally, suppose \(E \) is the set of all pairs \((i, j)\) such that \(A_{ij} \), the \((i, j)\)th entry of \(A \), is 0. We want to find a mapping \(f : E \to \Sigma \) such that the letters assigned to any maximal horizontal or vertical contiguous sequence of members of \(E \) form, in order, a word of \(W \). If this is possible, we say that \((W, A) \) is a constructable crossword system.

\(CROSSWORD = \{ (W, A) \mid W \subseteq \Sigma^* \text{ and } A \text{ is an } n \times n \text{ } 0 - 1 \text{ matrix and} \)

\((W, A) \text{ is a constructable crossword system.} \}

(For instance, the set \(W = \{ a, b, ab, ba, aba \} \) over the alphabet \(\{0, 1\} \) and the matrix \(A \) as in the figure form a constructable crossword system. One of the crosswords so constructed is the matrix \(B \) in the figure.)