Problem 1: Detailed Turing machine description
Give a complete, formal description of a (basic one-head, one-tape) Turing machine that decides
the language \(L = \{0^i1^j2^k : 0 \leq i < j \} \). This should consist of a list of the tuple components of the
Turing machine, with the transition function represented by a state transition diagram.
(Yes, we know that it’s tedious to write Turing machine descriptions. But we think that everyone
should do it once. We’ll try to avoid asking for this on other homeworks.)

Problem 2: Implementation-Level (also known as “higher-level” Turing machine de-
scription
Describe the operation of a basic Turing machine that recognizes the language
\[L = \{w : w \text{ does not contain twice as many 0s as 1s} \} \]
This time, your description should not be completely formal. Rather, it should consist of a list
of the tuple components, with the transitions described in words. (This is what Sipser calls an
“implementation description” on p. 157.)
You may describe your construction in terms of a variant of the basic Turing machine model
presented in class or in Sipser’s book (e.g., multitape), provided that you quote the correct trans-
formation result to show how one would turn your construction into a description of a basic Turing
machine to recognize the same language.

Problem 3: Robustness of the Turing Machine model
Consider a Turing machine model that uses a 2-dimensional tape, corresponding to the upper right
quadrant of the plane. The head of such a Turing machine could move to the right, left, up or down.
Sketch a proof that such a model does not add extra computing power; that is, the class of languages
recognized by such Turing machines is the same as the class recognized by basic Turing machines.

Problem 4: Turing-recognizability and Turing-decidability

1. Sketch proofs that the class of Turing-recognizable languages is closed under the language
 operations union, intersection, concatenation, and star.

2. Sketch proofs that the class of Turing-decidable languages is closed under the language oper-
 ations union, intersection, complement, concatenation, and star.

Problem 5:

1. Let \(L \) be a set of natural numbers that can be enumerated by an enumerator Turing machine
 in nondecreasing order, possibly with repeats. Prove that \(L \) is a decidable set of numbers.