This problem set contains some harder-than-usual problems. In solving them, you can call upon everything you have learned so far about finite-state automata and regular languages.

Problem 1: Distinguishable strings and indices (From Sipser Problems 1.51 and 1.52)

Let \(x \) and \(y \) be strings and let \(L \) be any language (not necessarily regular). We say that \(x \) and \(y \) are distinguishable by \(L \) if some string \(z \) exists such that exactly one of the strings \(xz \) and \(yz \) is in \(L \). On the other hand, if for all strings \(z, xz \) is in \(L \) if and only if \(yz \) is in \(L \), we say that \(x \) and \(y \) are indistinguishable by \(L \). If \(x \) and \(y \) are indistinguishable by \(L \), we write \(x \equiv_L y \).

(a) Show that \(\equiv_L \) is an equivalence relation.

Now let \(L \) be a language and \(X \) a set of strings. We say that \(X \) is pairwise distinguishable by \(L \) if every two distinct strings in \(X \) are distinguishable by \(L \). Define the index of \(L \) to be the maximum number of elements in any set that is pairwise distinguishable by \(L \). In other words, the index of \(L \) is equal to the number of equivalence classes in \(L \), which may be finite or infinite.

(b) Let \(L_1 \) be the regular language \((01)^*00\). What is the index of \(L_1 \)? Describe the equivalence classes.

(c) Build a DFA for \(L_1 \) with states corresponding to the equivalence classes (i.e., the number is states is equal to the index of \(L_1 \)).

(d) Let \(L_2 \) be the non-regular language \(\{0^n1^n : n \geq 1\} \). What is the index of \(L_2 \)? Describe the equivalence classes.

(e) Now consider an arbitrary language \(L \). Prove that if \(L \) is recognized by a DFA with \(k \) states, then \(L \) has index at most \(k \).

(f) Again consider an arbitrary language \(L \). For \(L \) with index \(k \), describe how to construct a DFA with \(k \) states.

We can conclude from this problem that a language \(L \) is regular if and only if it has a finite index. Moreover, its index is the size of the smallest DFA recognizing it.

Problem 2: Inequivalent DFAs Suppose that two DFAs \(M_1 = (Q_1, \{0, 1\}, \delta_1, q_0, F_1) \) and \(M_2 = (Q_2, \{0, 1\}, \delta_2, q_0, F_2) \) over alphabet \(\{0, 1\} \) recognize different languages.

(a) In terms of the sizes of the state sets \(Q_1 \) and \(Q_2 \), determine an upper bound \(u \) on the length of the smallest string on which machines \(M_1 \) and \(M_2 \) must give different answers (accept vs. reject). That is, determine some \(u \) such that \(M_1 \) and \(M_2 \) must actually give different results for some string of length \(\leq u \).

(b) Prove your answer to (a).