Proof by **Cases:**

Friends & Strangers

Six people. Every two are either friends or strangers.

Claim: there is a set of
3 mutual friends or
3 mutual strangers

Friends & Strangers

People are circles
3 mutual strangers
3 mutual friends

red line shows friends
blue line shows strangers

Friends & Strangers

Take 3 minutes to find a counter-example
--or convince yourself there isn’t any counterexample, that is, the **Claim** is true.
A Proof of the Claim

• Person has a line to each of the 5 other people.
• Lines are red or blue, so at least 3 must be the same color.

Case 1: some pair of these friends are friends of each other, then we have 3 mutual friends:

Case 2: no pair of these friends are friends of each other, so we have 3 mutual strangers:

Since the Claim is true in either case, and one of these cases always holds, the Claim is always true.

QED
Ramsey’s Theorem

For any \(k \), every large enough group of people will include either \(k \) mutual friends, or \(k \) mutual strangers.

Let \(R(k) \) be the large enough size. So we’ve proved that \(R(3) = 6 \).

Ramsey’s Numbers

Turns out that \(R(4) = 18 \) (not easy!)
\(R(5) \) is unknown!
Paul Erdös considered finding \(R(6) \) a hopeless challenge!
So in our second class, we have reached a research frontier!