6.006- Introduction to Algorithms

Lecture 13

Prof. Manolis Kellis

CLRS 22.4-22.5
Goal for today: Graphs III

- Recap on graphs, games, searching, BFS
 - Defs, Rubik, BFS, correctness, shortest paths

- Depth first search (DFS). DFS vs. BFS
 - Algorithm, runtime, correctness, edge classes

- Applications of DFS
 - Topological Sort on DAGs, job scheduling
 - Connected components, strongly connected

- Properties of real-world & biological networks
 - Types, small-world, scale-free, growth, motifs, interpreting, centrality, similarity, dynamics
Graphs

- $G = (V, E)$
- V a set of vertices
 - Usually number denoted by n
- $E \subseteq V \times V$ a set of edges (pairs of vertices)
 - Usually number denoted by m
 - Note $m \leq n(n-1) = O(n^2)$

Undirected example

- $V = \{a, b, c, d\}$
- $E = \{\{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{c, d\}\}$

Directed example

- $V = \{a, b, c\}$
- $E = \{(a, c), (a, b), (b, c), (c, b)\}$
Searching for a solution path

27 two-away neighbors
6 neighbors
1 turn

How big is the space?

• Graph algorithms allow us explore space
 – Nodes: configurations
 – Edges: moves between them
 – Paths to ‘solved’ configuration: solutions
BFS algorithm outline

- Initial vertex s
 - Level 0
- For i=1,...
 - grow level i
 - Find all neighbors of level i-1
 - (except those already seen)
 - i.e. level i contains vertices reachable via a path of i edges and no fewer
- Where can the other edges of the graph be?
 - They cannot jump a layer (otherwise v would be in Level 2)
 - But they can be between nodes in same or adjacent levels
BFS Algorithm

• BFS(V, Adj, s)

\[
\text{level} = \{s: 0\}; \quad \text{parent} = \{s: \text{None}\}; \quad i = 1
\]

\[
\text{frontier} = [s]\quad \quad \# \text{previous level, } i-1
\]

while \text{frontier}

\[
\text{next} = []\quad \quad \# \text{next level, } i
\]

for \(u\) in \text{frontier}

for \(v\) in Adj[\(u\)]

if \(v\) not in \text{level} \quad \# \text{not yet seen}

\[
\text{level}[v] = i \quad \quad \# \text{level of } u+1
\]

\[
\text{parent}[v] = u
\]

\[
\text{next}.append(v)
\]

frontier = next

\[
i += 1
\]
BFS Analysis: Correctness

i.e. why are all nodes reachable from s explored?
(we’ll actually prove a stronger claim)

• **Claim:** If there is a path of \(L \) edges from \(s \) to \(v \), then \(v \) is added to \textit{next} when \(i=L \) or before

• **Proof:** induction

 ▪ **Base case:** \(s \) is added before setting \(i=1 \)

 ▪ **Inductive step when \(i=L \):**
 • Consider path of length \(L \) from \(s \) to \(v \)
 • This must contain: (1) a path of length \(L-1 \) from \(s \) to \(u \)
 • (2) and an edge \((u,v)\) from \(u \) to \(v \)

 ▪ By inductive hypothesis, \(u \) was added to \textit{next} when \(i=L-1 \) or before
 • If \(v \) has not already been inserted in \textit{next} before \(i=L \), then it gets added during the scan of \(\text{Adj}[u] \) at \(i=L \)

 ▪ So it happens when \(i=L \) or before. QED
Corollary: BFS \rightarrow Shortest Paths

- From correctness analysis, conclude more:
 - Level[v] is length of shortest $s \rightarrow v$ path
- Parent pointers form a shortest paths tree
 - i.e. the union of shortest paths to all vertices
- To find shortest path from s to v
 - Follow parent pointers from v backwards
 - Will end up at s
Goal for today: Graphs III

- Recap on graphs, games, searching, BFS
 -Defs, Rubik, BFS, correctness, shortest paths

- **Depth first search (DFS). DFS vs. BFS**
 -Algorithm, runtime, correctness, edge classes

- **Applications of DFS**
 -Topological Sort on DAGs, job scheduling
 -Connected components, strongly connected

- **Properties of real-world & biological networks**
 -Types, small-world, scale-free, growth, motifs, interpreting, centrality, similarity, dynamics
Depth First Search (DFS)
DFS Algorithm Outline

- Explore a maze
 - Follow path until you get stuck
 - Backtrack along breadcrumbs till find new exit
 - i.e. recursively explore
DFS Algorithm

• \texttt{parent} = \{s: None\}
• call \texttt{DFS-visit} (V, Adj, s)

\begin{verbatim}
def DFS-visit (V, Adj, u):
 for v in Adj[u]:
 if v not in \texttt{parent}:
 \texttt{parent}[v] = u
 DFS-visit (V, Adj, v)
\end{verbatim}

#not yet seen
#recurse!
DFS example run (starting from s)

1 (in tree)

5 (forward edge)

1 2 (in tree)

4 (back edge)

2 (in tree)

3 (in tree)

7 (cross edge)
DFS Runtime Analysis

• Quite similar to BFS
• DFS-visit only called once per vertex v
 ▪ Since next time v is in parent set
• Edge list of v scanned only once (in that call)
• So time in DFS-visit is:
 ▪ 1 per vertex + 1 per edge
• So time is O(n+m)
DFS Correctness?

• Trickier than BFS
• Can use induction on length of \textit{shortest} path from starting vertex
 ▪ Inductive Hypothesis:
 “each vertex at distance k is visited (eventually)”
 ▪ Induction Step:
 • Suppose vertex v at distance k.
 ▪ Then some u at \textit{shortest} distance k-1 with edge (u,v)
 ▪ Can decompose into s→u at \textit{shortest} distance k-1, and (u,v)
 • By inductive hypothesis: u is visited (eventually)
 • By algorithm: every edge out of u is checked
 ▪ If v wasn’t previously visited, it gets visited from u (eventually)
Edge Classification

- **Tree edge** used to get to new child
- **Back edge** leads from node to ancestor in tree
- **Forward edge** leads to descendant in tree
- **Cross edge** leads to a different subtree
- To label what edge is of what type, keep global time counter and store interval during which vertex is on recursion stack
Goal for today: Graphs III

• Recap on graphs, games, searching, BFS
 – Defs, Rubik, BFS, correctness, shortest paths
• Depth first search (DFS). DFS vs. BFS
 – Algorithm, runtime, correctness, edge classes
• Applications of DFS
 – Topological Sort on DAGs, job scheduling
 – Connected components, strongly connected
• Properties of real-world & biological networks
 – Types, small-world, scale-free, growth, motifs, interpreting, centrality, similarity, dynamics
BFS vs. DFS
Breadth First Search

- start with vertex v
 - list all its neighbors (dist 1)
 - then all their neighbors (distance 2)
- Define frontier \{s\} \rightarrow \{\text{dist1}\} \rightarrow \{\text{dist2}\}
- Repeat until all vertices found

Depth First Search

- Like exploring a maze
- From current vertex, move to another
- Until you get stuck
- Then backtrack till new place to explore
BFS/DFS Algorithm Similarities

- Maintain “todo list” of vertices to be scanned

- Until list is empty
 - Take a vertex v from front of list
 - Mark it scanned
 - Examine all outgoing edges (v,u)
 - If u not marked, add to the todo list
 - BFS: add to end of todo list (queue: FIFO)
 - DFS: add to front of todo list (recursion stack: LIFO)
Key difference: Queue vs. Stack

• BFS queue is explicit
 ▪ Created in pieces
 ▪ (level 0 vertices) . (level 1 vertices) . (level 2 vert…
 ▪ the frontier at iteration i is piece i of vertices in queue

• DFS stack is implicit
 ▪ It’s the call stack of the python interpreter
 ▪ From v, recurse on one child at a time
 ▪ But same order if put all children on stack, then pull off (and recurse) one at a time
Goal for today: Graphs III

• Recap on graphs, games, searching, BFS
 – Defs, Rubik, BFS, correctness, shortest paths

• Depth first search (DFS). DFS vs. BFS
 – Algorithm, runtime, correctness, edge classes

• Applications of DFS
 – Topological Sort on DAGs, job scheduling
 – Connected components, strongly connected

• Properties of real-world & biological networks
 – Types, small-world, scale-free, growth, motifs, interpreting, centrality, similarity, dynamics
Topological Sort
Job Scheduling

• Given
 • A set of tasks
 • Precedence constraints
 • saying “u must be done before v”
 • Represented as a directed graph

• Goal:
 • Find an ordering of the tasks that satisfies all precedence constraints
Scheduling a set of jobs

- Make bus in seconds flat
- Fall out of bed
- Drag a comb across my head
- Look up (at clock)
- Find my coat
- Drink a cup
- Notice that I'm late
- Wake up
- Find my way downstairs
- Grab my hat
Defining job ordering constraints

1. Wake up
2. Fall out of bed
3. Drag a comb across my head
4. Find my way downstairs
5. Drink a cup
6. Look up
7. Notice I’m late
8. Find my coat
9. Grab my hat
10. Make the bus in seconds flat
Feasibility / schedule existence

• Is there a schedule?

• Each requires previous one to be completed first
Directed Acyclic Graphs (DAGs)

- Directed Acyclic Graph
 - Graph with no cycles \rightarrow A schedule exists!
- Source: vertex with no incoming edges
- Claim: every DAG has a source
 - Start anywhere, follow edges backwards
 - If never get stuck, must repeat vertex
 - So, get stuck at a source
- Conclude: every DAG has a schedule
 - Find a source, it can go first
 - Remove, schedule rest of work recursively
Scheduling algorithm 1 (for DAGs)

- Find a source
 - Scan vertices to find one with no incoming edges
 - Or use DFS on backwards graph
- Remove, recurse
- Time to find one source
 - $O(m)$ with standard adjacency list representation
 - Scan all edges, count occurrence of every vertex as tail
- Total: $O(nm)$
Scheduling algorithm 2 (for DAGs)

• Consider DFS
• Observe that we don’t return from recursive call to DFS(v) until all of v’s children are finished
• So, “finish time” of v is later than finish time of all children
• Thus, later than finish time of all descendants
 ▪ i.e., vertices reachable from v
 ▪ Descendants well-defined since no cycles
• So, reverse of finish times is valid schedule
Implementation of scheduling alg 2

- \texttt{seen} = \{\}; \texttt{finishes} = \{\}; \texttt{time} = 0

DFS-visit (s)
for v in \text{Adj}[s]
 if v not in \texttt{seen}
 \texttt{seen}[v] = 1
 DFS-visit (v)
 \texttt{time} = \texttt{time} + 1
 \texttt{finishes}[v] = \texttt{time}

- TopologicalSort
 for s in V
 DFS-visit(s)

- Sort vertices by \texttt{finishes}[] key
Fall out of bed

Drag a comb across my head

Find my way downstairs

Find my coat

Look up (at clock)

Notice I’m late

Grab my hat

Make bus in seconds flat

Drink a cup

In progress

Completed
Analysis

• Just like connected components DFS
 ▪ Time to DFS-Visit from all vertices is $O(m+n)$
 ▪ Because we do nothing with already seen vertices

• Might DFS-visit a vertex v before its ancestor u
 ▪ i.e., start in middle of graph
 ▪ Does this matter?
 ▪ No, because finish[v] < finish[u] in that case
Handling Cycles

• If two jobs can reach each other, we must do them at same time

• Two vertices are strongly connected if each can reach the other

• Strongly connected is an equivalence relation
 ▪ So graph has strongly connected components

• Can we find them?
 ▪ Yes, another nice application of DFS
 ▪ But tricky (see CLRS)
 ▪ You should understand algorithm, not proof
Goal for today: Graphs III

• Recap on graphs, games, searching, BFS
 – Defs, Rubik, BFS, correctness, shortest paths

• Depth first search (DFS).
 – Algorithm, runtime, correctness, edge classes

• Applications of DFS
 – Topological Sort on DAGs, job scheduling
 – Connected components, strongly connected

• Properties of real-world & biological networks
 – Types, small-world, scale-free, growth, motifs, interpreting, centrality, similarity, dynamics
Connected Components
Connected Components

- Undirected graph $G=(V,E)$
- Two vertices are connected if there is a path between them
- An equivalence relation
- Equivalence classes are called components
 - A set of vertices all connected to each other
Finding all connected components

To find one connected component:

• The key idea: Both DFS and BFS will reach all vertices reachable from starting vertex s
 ▪ i.e., the ‘component’ of any starting vertex s

• Start with any vertex s:
 ▪ Run DFS (or BFS) to find all vertices in component
 ▪ Mark them as belonging to the same component as s

To find all connected components:

• Run the above search n times
 ▪ Starting with every vertex
Naïve Algorithm: DFS n times

- **DFS-visit** (u, owner, o)

 #mark all nodes reachable from u with owner o

 for v in Adj[u]

 if v not in owner #not yet seen

 owner[v] = o #instead of parent

 DFS-visit (v, owner, o)

- **DFS-Visit**(s, owner, s) will mark owner[v]=s for any vertex reachable from s

- **Correctness:**

 - All vertices in same component will receive the same ownership labels

- **Cost?**

 - n times BFS/DFS? $\Rightarrow O(n(m+n))$?
Better: DFS only for unmarked vertices

- If vertex has already been reached, don’t need to search from it!
 - Its connected component already marked with owner
- $owner = \{\} \quad \# \text{global variable owner}$

 for s in V

 if not(s in $owner$)

 DFS-Visit(s, $owner$, s) \#or can use BFS

- Now every vertex examined exactly twice
 - Once in outer loop and once in DFS-Visit
- And every edge examined once
 - In DFS-Visit when its tail vertex is examined
- Total runtime to find components is $O(m+n)$
Directed Graphs

• In undirected graphs, connected components can be represented in n space
 ▪ One “owner label” per vertex

• Can ask to compute all vertices reachable from each vertex in a directed graph
 ▪ i.e. the “transitive closure” of the graph
 ▪ Answer can be different for each vertex
 ▪ Explicit representation may be bigger than graph
 ▪ E.g. size n graph with size \(n^2 \) transitive closure
Goal for today: Graphs III

- **Recap on graphs, games, searching, BFS**
 - Defs, Rubik, BFS, correctness, shortest paths
- **Depth first search (DFS).**
 - Algorithm, runtime, correctness, edge classes
- **Applications of DFS**
 - Topological Sort on DAGs, job scheduling
 - Connected components, strongly connected

Properties of real-world & biological networks
- Types, small-world, scale-free, growth, motifs, interpreting, centrality, similarity, dynamics
Global properties of networks

Mostly pointers for further reading
Networks in the real world

- **Infrastructure**: Internet, power, transport, distribution
- **Social**: friends, actors, co-authors, affiliation members
- **Information**: web pages, paper citations, patents, file-sharing, shopping lists, document-keyword
- **Biology**: physical, metabolic, regulatory, neural, ecological
Properties of real-world networks

- **Small-world property**: Milgram 6-degrees ('60s)
 - Any pair of vertices connected by short paths
 - People *find* these paths with no global information

- **‘Scale-free’/power-law degree distribution**:
 - 80/20 rule: 80% of connections in 20% of vertices
 - Few heavily-connected hubs, most lie in the fringes

- **Network growth and preferential attachment**
 - Rich-get-richer can lead to power-law distributions

- **Clustering coefficient**: average probability that \(v \)’s neighbors are also connected to each other.
 - Measures the density of closed vs. open ‘triangles’
 - More generally: measure frequency of all *network motifs*, i.e. over-/under-representation of all sub-graphs size 3,4,5,…
Network ‘motifs’

- Network building blocks
 - Smallest meaningful unit
- Interpretable circuit components
 - Feed-forward loops
 - Feedback loops
 - Cross-regulation
 - Amplification, etc
- Discovered based on their over-representation
 - Compared to ‘random’ net
Interpreting biological network properties

- **Hierarchical organization**
 - Master regulators vs. local regulators
- **Degree distribution**
 - In-hubs, out-hubs
- **Diameter**
 - Info transfer
- **Modularity**
 - Locality
- **Clustering**
 - Subnetworks
- **Flow direction**
 - Downward/upward

e.g. modENCODE consortium, *Science*, 2010
Node properties: Centrality (hubs)

- Centrality of node v can be measured as:

1. **Degree centrality**: Number of in/out-edges for v, i.e. number of neighbors as measure of importance/authority.

2. **Eigenvector centrality**: sum of centrality of v’s neighbors; high when v has many neighbors or ‘central’ neighbors

3. **Katz centrality**: balances 1 (# of neighbors) and 2 (neighbor centrality) using a weighting parameter

4. **Page rank**: dilutes ‘centrality’ flow out of a vertex by its number of neighbors. Used in Google search results.

5. **Closeness centrality**: mean distance to other vertices.

6. **Betweenness centrality**: # of shortest paths through v.

7. **Flow-betweenness**: amount of flow through v for all (s,t)

8. **Random-walk betweenness**: s diffusion, sink t, traversing v
Node pairs: Similarity/Closeness

• **Assortative mixing:** Nodes with similar properties are similar, in the same component, clique, etc…

• **Node similarity, or node equivalence:**
 - **Structural:** share many of the same neighbors
 - **Regular:** share neighbors with similar properties

• **Property clustering:** A set of n nodes can form a:
 - **Clique:** fully connected, each n-1 neighbors
 - **k-plex:** nearly fully connected, each $n-k$ neighbors
 - **k-core:** each k neighbors. Note: k-core=$(n-k)$-plex

• Defining graph neighborhoods with components:
 - **Component:** Any 2 nodes linked by at least one path
 - **k-component:** at least k vertex-independent paths
Beyond components / k-components

• Many networks have 1 giant connected component
 ▪ But sub-structure exists within it eg. ‘clusters’ of friends

• Graph partitioning algorithms. Break into k clusters
 ▪ Simplest form: graph bisection problem. NP complete
 • Exhaustive search \((2^{n+1})/\sqrt{n}\) partitions. Only heuristics
 ▪ Kernigan-Lin: Divide randomly, and re-assign members
 ▪ Spectral partitioning: uses graph Laplacian
 measures ‘diffusion’ (vs. connectivity)

• Community detection algorithms
 ▪ Discover coherent small groups
 ▪ Modularity maximization
 • Spectral, betweenness-based, other
Dynamic processes on networks

• *Percolation and network resilience*
 - Uniform/non-uniform removal of vertices/edges/hubs
 - E.g. router failure, network attack, vaccination

• *Epidemics on networks*
 - Spread of disease, susceptible/infected/recovered
 - Time-dependent properties of disease spreading

• *Dynamical systems on networks, rates, dx/dt*
 - Metabolic modeling, steady-state analysis/fixed points
 - Information flow, stability, synchronization

• *Network search*
 - Web search, distributed databases, message passing
Recommended further reading

Networks
An Introduction
M. E. J. Newman

NETWORKS
CROWDS
AND MARKETS
Reasoning about a Highly Connected World
DAVID EASLEY
and
JON KLEINBERG

Cambridge
Today’s recap: Graphs III

- **Recap on graphs, games, searching, BFS**
 - Defs, Rubik, BFS, correctness, shortest paths
- **Depth first search (DFS).**
 - Algorithm, runtime, correctness, edge classes
- **Applications of DFS**
 - Topological Sort on DAGs, job scheduling
 - Connected components, strongly connected
- **Properties of real-world & biological networks**
 - Types, small-world, scale-free, growth, motifs, interpreting, centrality, similarity, dynamics
Games, Graphs, Searching, Networks

Graphs I: Introduction to Games and Graphs
• Rubik’s cube, Pocket cube, Game space
• Graph definitions, representation, searching

Graphs II: Graph algorithms and analysis
• Breadth First Search, Depth First Search
• Queues, Stacks, Augmentation, Topological sort

Graphs III: Networks in biology and real world
• Network/node properties, metrics, motifs, clusters
• Dynamic processes, epidemics, growth, resilience
Next: Shortest paths... Happy Spring Break!

<table>
<thead>
<tr>
<th>Unit</th>
<th>Pset</th>
<th>Week</th>
<th>Date</th>
<th>Lecture (Tuesdays and Thursdays)</th>
<th>Recitation (Wed and Fri)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intro</td>
<td>PS1</td>
<td>1</td>
<td>Tue Feb 01</td>
<td>1 Introduction and Document Distance</td>
<td>1 Python and Asymptotic Complexity</td>
</tr>
<tr>
<td>Binary Search Trees</td>
<td>Out: 2/1</td>
<td>2</td>
<td>Tue Feb 08</td>
<td>3 Scheduling and Binary Search Trees</td>
<td>2 Peak Finding Problem</td>
</tr>
<tr>
<td>Hashing</td>
<td>PS2 Out: 2/15</td>
<td>3</td>
<td>Tue Feb 15</td>
<td>5 Hashing I: Chaining, Hash Functions</td>
<td>3 Binary Search Tree Operations</td>
</tr>
<tr>
<td>Sorting</td>
<td>PS3. Out: 3/1</td>
<td>5</td>
<td>Tue Mar 01</td>
<td>8 Sorting I: Insertion & Merge Sort, Master Theorem</td>
<td>4 Rotations and AVL tree deletions</td>
</tr>
<tr>
<td>Dynamic Programming</td>
<td>PS6 Out: Tue 4/12</td>
<td>10</td>
<td>Tue Apr 12</td>
<td>18 DP I: Memoization, Fibonacci, Crazy Eights</td>
<td>6 Probability review, Pattern matching</td>
</tr>
<tr>
<td>Numbers Pictures (NP)</td>
<td>PS7 Out Thu 4/28</td>
<td>13</td>
<td>Tue May 3</td>
<td>22 Numerics I - Computing on large numbers</td>
<td>7 Universal Hashing, Perfect Hashing</td>
</tr>
<tr>
<td>Beyond</td>
<td></td>
<td>15</td>
<td></td>
<td>Final exam is cumulative L1-L26. Emphasis on L18-L26. Review Session on Fri 5/13 at 3pm</td>
<td></td>
</tr>
</tbody>
</table>