6.006 - Introduction to Algorithms

Lecture 3

Prof. Piotr Indyk
Overview

- Runway reservation system:
 - Definition
 - How to solve with lists

- Binary Search Trees
 - Operations

Readings: CLRS 10, 12.1-3
Runway reservation system

• Problem definition:
 – Single (busy) runway
 – Reservations for landings
 • maintain a set of future landing times
 • a new request to land at time t
 • add t to the set if no other landings are scheduled within < 3 minutes from t
 • when a plane lands, removed from the set
Runway reservation system

• Example

- $R = (41, 46, 49.1, 56)$
- requests for time:
 - $44 \Rightarrow$ reject (46 in R)
 - $53 \Rightarrow$ ok
 - $20 \Rightarrow$ not allowed (already past)

• Ideas for efficient implementation?
Some options:

• Keep R as an unsorted list
 – Bad: takes linear time to search for collisions
 – Good: can insert t in $O(1)$ time

• Keep R as a sorted array
 (resort after each insertion)
 – Bad: takes “a lot of” time to insert elements
 – Good: 3 minute check can be done in $O(\log n)$ time:
 – Using binary search, find* the smallest i such that $R[i] \geq t$ (next larger element)
 – Compare t to $R[i]$ and $R[i-1]$

Need: fast insertion into sorted list
(sort of)
Binary Search Trees

- Simple and natural data structures
- Building blocks for

(a,b) tree, 2-3 tree, 2-3-4 tree, AA tree, AVL tree, B tree, B+ tree, B* tree, Cartesian tree, Dancing tree, H tree, Leftist tree, Red-black tree, Scapegoat tree, Splay tree, T tree, Tango tree, Top tree, UB tree,
Binary Search Trees (BSTs)

• Each node x has:
 – $\text{key}[x]$
 – Pointers:
 • $\text{left}[x]$
 • $\text{right}[x]$
 • $\text{p}[x]$
Binary Search Trees (BSTs)

• Property: for any node x:
 – For all nodes y in the left subtree of x:
 \[\text{key}[y] \leq \text{key}[x] \]
 – For all nodes y in the right subtree of x:
 \[\text{key}[y] \geq \text{key}[x] \]

• How are BSTs made?
Growing BSTs

- Insert 10
- Insert 12
- Insert 5
- Insert 1
- Insert 6
- Insert 7
BST as a data structure

- Operations:
 - `insert(k)`: inserts key `k`
 - `search(k)`: finds the node containing key `k` (if it exists)
 - `next-larger(x)`: finds the next element after element `x`
 - `findmin(x)`: finds the minimum of the tree rooted at `x`
 - `delete(x)`: deletes node `x`
Search

Search(k):

• Recurse left or right until you find k, or get NIL
Next-larger

next-larger(x):
- If right[x] ≠ NIL then
 return minimum(right[x])
- Otherwise
 y ← p[x]
 While y ≠ NIL and x = right[y] do
 • x ← y
 • y ← p[y]
 Return y

next-larger(5)
next-larger(7)
Minimum

Minimum(x)
- While left[x]≠NIL do
 x ← left[x]
- Return x
Analysis

- We have seen insertion, search, minimum, etc.
- How much time does any of this take?
- Worst case: $O(\text{height})$
 \Rightarrow height really important
- After we insert n elements, what is the worst possible BST height?
Analysis

• n-1

• So, still $O(n)$ for the runway reservation system operations

• Next lecture: balanced BSTs

• Readings: CLRS 13.1-2