Today: Hashing II
- table resizing
- amortization
- string matching & Karp-Rabin
- rolling hash

Recall:
- hashing with chaining:
 - all possible keys
 - \(n \) keys in set DS
 - expected cost (insert/delete/search): \(\Theta(1+\alpha) \)
 - assuming simple uniform hashing OR universal hashing
 - hash function \(h \) takes \(O(1) \) time

- division method: \(h(k) = k \mod m \)
 - ideally prime

- multiplication method:
 \[h(k) = \left[(a \cdot k) \mod 2^w \right] \gg (w-r) \]
 - \(a \) random \(\ll w \) bits
 - \(m = 2^r \)
How large should table be?
- want $m = \Theta(n)$ at all times
- don’t know how large n will get @creation
- m too small \Rightarrow slow; m too big \Rightarrow wasteful

Idea: start small (constant)
grow (& shrink) as necessary

Rehashing: to grow or shrink table
hash function must change (m, r)
\Rightarrow must rebuild hash table from scratch
for item in old table: \Rightarrow for each slot:
insert into new table
$\Rightarrow \Theta(n+m)$ time $= \Theta(n)$ if $m = \Theta(n)$

How fast to grow? when n reaches m, say
- $m += 1$?
 \Rightarrow rebuild every step
 $\Rightarrow n$ inserts cost $\Theta(1+2+\cdots+n) = \Theta(n^2)$
- $m *= 2$? $m = \Theta(n)$ still $(r += 1)$
 \Rightarrow rebuild at insertion 2^i
 $\Rightarrow n$ inserts cost $\Theta(1+2+4+8+\cdots+n)$
 really the next power of 2
 $= \Theta(n)$
- a few inserts cost linear time,
 but $\Theta(1)$ “on average”
Amortized analysis — common technique in DSs
- like paying rent: $1500/month ≈ $50/day
- operation has amortized cost $T(n)$
 if k operations cost $\leq k \cdot T(n)$
- "$T(n)$ amortized" roughly means
 $T(n)$ "on average", but averaged over all ops.
- e.g. inserting into a hash table
 takes $O(1)$ amortized time

Back to hashing: maintain $m = \Theta(n) \Rightarrow \alpha = \Theta(1)$
\Rightarrow support search in $O(1)$ expected time
(assuming simple uniform hashing/universal)

Delete: also $O(1)$ expected as is
- space can get big with respect to n
 e.g. $n \times$ insert, $n \times$ delete
- solution: when n decreases to $m/4$,
 shrink to half the size
$\Rightarrow O(1)$ amortized cost for both insert&delete
- analysis harder; see CLRS 17.4

Resizable arrays:
- same trick solves Python “list” (array)
\Rightarrow list.append & list.pop in $O(1)$ amortized

```
  0 1 2 3 4 5 6 7
  | | | | | | | |
list   unused
```
String matching: given two strings s & t, does s occur as a substring of t? (and if so, where & how many times?)

E.g. s = '6.006' & t = your entire INBOX ('grep' on UNIX)

Simple algorithm:
- any(s == t[i:i+len(s)])
 for i in range(len(t) - len(s))
- O(|s|) time for each substring comparison
 \Rightarrow O(|s| \cdot (|t| - |s|)) time
- = O(|s| \cdot |t|) potentially quadratic

Karp-Rabin algorithm:
- compare h(s) == h(t[i:i+len(s)])
- if hash values match, likely so do strings
 - can check s == t[i:i+len(s)] to be sure \sim cost O(|s|)
 - if yes, found match - done
 - if no, happened with probability < 1/|s|
 \Rightarrow expected cost is O(1) per i
- need suitable hash function
- expected time = O(|s| + |t| \cdot \text{cost}(h))
 - naively h(x) costs \|x\|
 - we'll achieve O(1)!
- idea: t[i:i+len(s)] \approx t[i+1:i+1+len(s)]
Rolling hash ADT: maintain string \(x \) subject to
- \(r() \): reasonable hash function \(h(x) \)
- \(r.\text{append}(c) \): add letter \(c \) to end of \(x \)
- \(r.\text{skip}(c) \): remove front letter from \(x \), assuming it is \(c \)

Karp-Rabin application:
for \(c \) in \(s \):
 \(rs.\text{append}(c) \)
for \(c \) in \(t[:\text{len}(s)] \):
 \(rt.\text{append}(c) \)
 if \(rs() == rt() \): ...
for \(i \) in \(\text{range(len}(s), \text{len}(t)) \):
 \(rt.\text{skip}(t[i-\text{len}(s)]) \)
 \(rt.\text{append}(t[i]) \)
 if \(rs() == rt() \): ...

+\(O(\#\text{matches} - |s|) \) to verify

Data structure: treat string \(x \) as a multidigit number \(u \) in base a
 alphabet size \(\uparrow \) e.g. 256
- \(r() = u \mod p \) for prime \(p \approx |s| \) or |t|
 ideally random (division method)
- \(r \) stores \(u \mod p \) & \(|x| \) (really \(a^{|x|} \)), not \(u \)
 \(\Rightarrow \) smaller & faster to work with
 \((u \mod p \text{ fits in one machine word}) \)
- \(r.\text{append}(c) = (u \cdot a + \text{ord}(c)) \mod p \)
 \(= [(u \mod p) \cdot a + \text{ord}(c)] \mod p \)
- \(r.\text{skip}(c) = [(u - \text{ord}(c) \cdot (a^{|x|-1} \mod p)) \mod p \]
 \(= [(u \mod p) - \text{ord}(c) \cdot (a^{|x|-1} \mod p)] \mod p \)