Today: Linear-Time Sorting
- comparison model
- lower bounds:
 - searching: \(\Omega(lg n) \)
 - sorting: \(\Omega(n lg n) \)
- \(O(n) \) sorting algorithms
 - counting sort
 - radix sort

Lower bounds: claim
- searching among \(n \) preprocessed items requires \(\Omega(lg n) \) time
 \(\Rightarrow \) binary search, AVL tree search optimal
- sorting \(n \) items requires \(\Omega(n lg n) \)
 \(\Rightarrow \) mergesort, heap sort, AVL sort optimal
 ... in the comparison model

Comparison model of computation:
- input items are black boxes (ADTs)
- only support comparisons (\(<, >, \leq, \geq\) etc.)
- time cost = \# comparisons
Decision tree: any comparison algorithm can be viewed/specified as a tree of all possible comparison outcomes & resulting output, for a particular n:

- e.g. binary search for n=3:

```
A[1] < x?
  NO
  A[0] < x?
    NO
    x ≤ A[0]
    YES
    A[0] < x ≤ A[1]
  YES
    NO
    YES
    YES
```

- internal node = binary decision
- leaf = output (algorithm is done)
- root-to-leaf path = algorithm execution
- path length (depth) = running time
- height of tree = worst-case running time

In fact, binary decision tree model is more powerful than comparison model, and lower bounds extend to it.
Search lower bound:
- \# leaves ≥ \# possible answers
- \# leaves ≥ \(n \) (at least 1 per \(A[i] \))
- decision tree is binary
 \(\Rightarrow \) height ≥ \(\lg \Theta(n) = \lg n + \Theta(1) \)

Sorting lower bound:
- leaf specifies answer as permutation:
- all \(n! \) are possible answers
 \(\Rightarrow \) \# leaves ≥ \(n! \)
 \(\Rightarrow \) height ≥ \(\lg n! \)
 \[= \lg (1 \cdot 2 \cdot \ldots \cdot (n-1) \cdot n) \]
 \[= \sum_{i=1}^{n} \lg i \]
 \[≥ \sum_{i=\lceil \log_2 n \rceil}^{n} \lg i \]
 \[≥ \sum_{i=\lceil \log_2 n \rceil}^{n} \log \frac{n}{i} \]
 \[= \frac{n}{2} \lg n - \frac{n}{\log n} = \Omega(n \lg n) \]
- in fact \(\lg n! = n \lg n - O(n) \) via:

 Sterling's formula:
 \[n! \sim \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \]
 \[\Rightarrow \lg n! \sim n \lg n - (\lg e) n + \frac{1}{2} \lg n + \frac{1}{2} \lg (2\pi) \]
Linear-time sorting: if \(n \) keys are integers \(\in \{0, 1, \ldots, k-1\} \), can do more than compare them.

\(\Rightarrow \) lower bounds don't apply.
- if \(k = n^{O(1)} \), can sort in \(O(n) \) time.

\(\text{OPEN: } O(n) \) time possible for all \(k \)?

Counting sort:
- \(L = \) array of \(k \) empty lists \(\text{?} \) \(O(k) \)
- \(\text{for } j \text{ in range}(n): \)
 \(\text{L[key(A[j])].append(A[j])} \) \(O(1) \) \(\checkmark \) random access using integer key
- output = []
- \(\text{for } i \text{ in range}(k): \)
 \(\text{output.extend(L[i])} \) \(O(\sum_{i=1}^{k} L[i]) \) \(\sum = O(k+n) \)

Time: \(\Theta(n+k) \)
- also \(\Theta(n+k) \) space

Intuition: count key occurrences using RAM output <count> copies of each key in order
- but item is more than just a key

CLRS has cooler implementation of counting sort with counters, no lists ~
- but time bound is the same
Radix sort:
- imagine each integer in base b
 \[d = \log_b k \] digits \(\in \{0, 1, \ldots, b-1\} \)
- sort by least significant digit
- \(\ldots \Rightarrow \) all \(n \) items
- sort by most significant digit
 \(\Rightarrow \) sort must be stable:
 preserve relative order of items
 with the same key
 \(\Rightarrow \) don’t mess up previous sorting

\[\begin{array}{c|c|c|c|c}
3 & 2 & 9 & 7 & 2 \\
4 & 5 & 7 & 3 & 5 \\
6 & 5 & 7 & 4 & 3 \\
8 & 3 & 9 & 4 & 5 \\
7 & 2 & 0 & 6 & 5 \\
3 & 5 & 5 & 8 & 3 \\
\end{array} \]

\[\begin{array}{c|c|c|c|c}
7 & 2 & 0 & 3 & 2 \\
3 & 5 & 5 & 4 & 3 \\
4 & 3 & 6 & 8 & 3 \\
6 & 5 & 7 & 4 & 5 \\
7 & 2 & 0 & 6 & 5 \\
8 & 3 & 9 & 3 & 2 \\
\end{array} \]

\[\begin{array}{c|c|c|c|c}
3 & 2 & 9 & 7 & 2 \\
3 & 5 & 5 & 4 & 3 \\
4 & 3 & 6 & 8 & 3 \\
6 & 5 & 7 & 4 & 5 \\
7 & 2 & 0 & 6 & 5 \\
8 & 3 & 9 & 3 & 2 \\
\end{array} \]

- use counting sort for digit sort
 \(\Rightarrow \Theta(n+b) \) per digit
 \(\Rightarrow \Theta((n+b)d) = \Theta((n+b) \log_b k) \) total time
- minimized when \(b = n \)
 \(\Rightarrow \Theta(n \log n k) \)
 \(= O(n^c) \) if \(k \leq n^c \)